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PREFACE.

THE design of the following treatise is to furnish a text-book

for the instruction of college classes in the first principles of As-

tronomy. My aim has accordingly been to limit the book to

such dimensions that it might be read entire without omissions,

and to make such a selection of-topics as should embrace every

thing most important to the student. I have aimed to express

every truth in concise and simple language ;
and when it was nec-

essary to introduce mathematical discussions, I have limited my-
self to the elementary principles of the science. The entire book
is divided into short articles, and each article is preceded by a

caption, which is designed to suggest the subject of the article.

Whenever it could be done to advantage, I have introduced sim-

ple mathematical problems, designed to test the student's famil-

iarity with the preceding principles. At the close of the book
will be found a collection of miscellaneous problems, many of

them extremely simple, which are to be used according to the dis-

cretion of the teacher.

I have dwelt more fully than is customary in astronomical

text-books upon various physical phenomena, such as the consti-

tution of the sun, the condition of the moon's surface, the phe-
nomena of total eclipses of the sun, the laws of the tides, and the

constitution of comets. I have also given a few of the results of

recent researches respecting binary stars. It is hoped that the

discussion of these topics will enhance the interest of the subject
with a class of students who might be repelled by a treatise ex-

clusively mathematical.

My special acknowledgments are due to Professor H. A. New-

ton, who has read all the proofs of the work, and to whom I am
indebted for numerous important suggestions.



PREFACE TO THE EDITION OF 1880.

WHEN this Treatise was first published, in 1865, the horizontal

parallax of the sun was generally assumed to be 8".5776, accord-

ing to the computations of Prof. Encke founded upon the tran-

sits of Venus in 1761 and 1769. Since that time several new

determinations of this quantity have been made, and they all in-

dicate that Encke's value is too small. The observations of the

transit of Venus in 1874 are not yet fully reduced, and it is not

certainly known what value will best represent all the observa-

tions. At present it is considered that the most probable value

is S".S5. When the value of this quantity has been definitively

determined, all the numbers in this Treatise which depend upon
the solar parallax will be changed. Meanwhile the following

table is presented (deduced from a parallax of 8".85), showing
the principal changes which may ultimately be expected:

ELEMENTS OF THE SOLAR SYSTEM.
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ASTRONOMY.

CHAPTER I.

GENERAL PHENOMENA OF THE HEAVENS. FIGURE AND DISTEN-

SIONS OF THE EARTH. DENSITY OF THE EARTH. PROOF OF

THE EARTH'S ROTATION. ARTIFICIAL GLOBES.

f 1. Astronomy is the science which treats of the heavenly bodies.

The heavenly bodies consist of the sun, the planets with their satel-

lites, the comets, and tfie fixed stars.

Astronomy is divided into Spherical and Physical. Spherical

Astronomy treats of the appearances, magnitudes, motions, and

distances of the heavenly bodies. Physical Astronomy applies

the principles of Mechanics to explain the motions of the heav-

enly bodies, and the laws by which they are governed.

2. Diurnal motion. If we examine the heavens on a clear

night, we shall soon perceive that the stars constantly maintain

the same position relative to each other. A map showing the

relative position of these bodies on any night, will represent
them with equal exactness on any other night. They all seem

to be at the same distance from us, and to be attached to the

surface of a vast hemisphere, of which the place of the observer

is the centre. But, although the stars are relatively fixed, the

hemisphere, as a whole, is in constant motion. Stars rise oblique-

ly from the horizon in the east, cross the meridian, and descend

obliquely to the west. The whole celestial vault appears to be

in motion round a certain axis, carrying with it all the objects

visible upon it, without disturbing their relative positions. The

point of the heavens which lies at the extremity of this axis of

rotation is fixed, and is called the pole. There is a star called

the pole star, distant about 1 from the pole, which moves in a

small circle round the pole as a centre. All other stars appear
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also to be carried around the pole in circles, preserving always

the same distance from it.

3. Axis of the celestial sphere. In order to determine the posi-

tion of the axis of rotation, take a telescope whose field of view

is at least three degrees in diameter, and direct it in such a man-

ner that the pole star may be seen throughout its diurnal motion

without changing the position of the telescope. The stay will

describe a small circle around the centre of the field of view of

the telescope, and this centre is the pole of the heavens. The

surface of the sphere to which all the celestial bodies appear to

be attached is called the celestial sphere, and the axis of rotation

is the axis of the celestial sphere.

4. Use of a telescope mounted equatorially. Raving determined

the axis of the celestial sphere, a telescope may be mounted ca-

pable of revolving upon a fixed axis which points toward the

celestial pole, in such a manner that the telescope may be placed

at any desired angle with the axis, and there may be attached to

it a graduated circle by which the magnitude of this angle may
be measured. A telescope thus mounted is called an equatorial

telescope, and it is frequently connected with clock-work, which

gives it a motion round the axis corresponding with the rotation

of the celestial sphere.

5. Diurnal paths of the heavenly bodies. Let now the telescope

be directed to any star so that it shall be seen in the centre of

the field of view, and let the clock-work be connected with it so

as to give it a perfectly uniform motion of rotation from east to

west. The star will follow the telescope, and the velocity of mo-

tion may be so regulated, that the star shall remain in the centre

of the field of view from rising to setting, the telescope all the

time maintaining the same angle with the axis of the heavens.

The same will be true of every star to which the telescope is di-

rected; from which we conclude that all objects upon the firma-

ment describe circles at right angles to its axis, each object al-

ways remaining at the same distance from the pole.

6. Time of one revolution oftJie celestial sphere.- If the telescope

be detached from the clock-work, and, having been pointed upon
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a star, be left fixed in its position, and the exact time of the star's

passing the central wire be noted, on the next night at about the

same hour the star will again arrive upon the central wire. The

time elapsed between these two observations will be found to be

23h. 56m. 4s., expressed in solar time.

This, then, is the time in which the celestial sphere makes one

revolution
;
and this time is always the same, whatever be the

star to which the telescope is directed.

7. A sidereal day. The time of one complete revolution of the

firmament is called a sidereal day. This interval is divided into

24 sidereal hours, each hour into 60 minutes, and each minute

into 60 seconds.

Since the celestial sphere turns through 360 in 24 sidereal

hours, it turns through 15 in one sidereal hour, and through 1

in four sidereal minutes.

8. The diurnal motion is never suspended. With a telescope ot

considerable power, all the brighter stars can be seen throughout
the day, unless very near the sun

;
and by the method of obser

vation already described, we find that the same rotation is pre*

served during the day as during the night.

All the heavenly bodies, without exception, partake of this di-

urnal motion
;
but the sun, the moon, the planets, and the comets

appear to have a motion of their own, by which they change
their position among the stars from day to day.

9. The celestial equator is the great circle in which a plane pass-

ing through the earth's centre, and perpendicular to the axis of

the heavens, intersects the celestial sphere.

10. If a plummet be freely suspended by a flexible line and

allowed to come to a state of rest, this line is called a vertical line.

The point where this line produced meets the visible half of the

celestial sphere, is called the zenith ; and the point where it meets

the invisible hemisphere, which is under the plane of the horizon,
is called the nadir.

Every plane passing through a vertical line is called a vertical

plane, or a vertical circle.

That vertical circle which passes through the celestial pole is
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called Hie meridian. The vertical circle at right angles to the

meridian is called the prime vertical.

11. A horizontal plane is a plane perpendicular to a vertical

line.

The sensible horizon of a place is the circle in which a plane

passing through the place, and perpendicular to the vertical line

at the place, cuts the celestial sphere.

The rational horizon is the circle in which a plane passing

through the earth's centre, and parallel to the sensible horizon,

cuts the celestial sphere. On account of the distance of the stars,

these two planes intersect the celestial sphere sensibly in the

same great circle.

The meridian and prime vertical meet the horizon in four

points, called the cardinal points; or the nortfi, south, east, and

west points.

12. The altitude of a heavenly body is its elevation above the

horizon measured on a vertical circle. The zenith distance of a

body is its distance from the zenith measured on a vertical circle.

The zenith distance is the complement of the altitude.

The azimuth of a body is the arc of the horizon intercepted
between the north or south point of the horizon, and a vertical

circle passing through the body. Altitudes and azimuths are

measured in degrees, minutes, and seconds. The amplitude of a

star is its distance from the east or west point at the time of its

rising or setting.

13. Consequences of the diurnal motion. If an observer could

watch the whole apparent

path of any star in the sky,
he would see it describe a

circle around the line PP';
but as only half the celestial

sphere is visible, it is evident

JN
that a part of the path of a

star may lie below the hori-

zon and be invisible. Thus,
in Fig. 1, let PP' be the axis

of rotation of the celestial

sphere; NILSMK be the ho.

mon produced to intersect
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the sphere, and dividing it into two hemispheres, NS being the

north and south line. If the parallel circles passing through

A, C, E, and G be the apparent diurnal paths of four stars, then

it is evident that

1st. The star which describes the circle AB will never descend

below the horizon.

2d. The star which describes the circle GH will never come

above the horizon.

3d. The star which describes the circle ICKD will be above

the horizon while it moves through ICK, and below the horizon

through the portion KDL
4th. The star which describes the circle LEMF will be above

the horizon through the portion of the circle LEM, and below

the horizon through the portion MFL.
These stars are said to rise at I and L, and to set at K and M.

They rise in the eastern part of the horizon, and set in the

western.

"With the star C, the visible portion of its path ICK is greater

than the invisible portion KDI ;
while with the star E, the visible

portion of its path LEM is less than the invisible portion MFL.

14. Culminations of the heavenly bodies. "When stars cross the

meridian above the pole they are said to culminate, or attain

their greatest altitude. All stars cross the meridian twice every

day; once above the pole, and once below the pole. The for-

mer is called their upper culmination, the latter is called their

lower culmination. Thus the star which describes the circle AB
has its upper culmination at A, and its lower culmination at B.

It is evident from the figure that all stars which lie to the

north of the equator, will remain above the horizon for a longer

period than below it
;

all stars south of the equator will remain

above the horizon for a shorter time than below it; and stars

situated in the plane of the equator will remain above the hori-

zon and below it for equal periods of time.

15. How the pole star may befound. Among the most remark-

able of the stars which never set in the latitude of New York, is

the group of stars known as Ursa Major, shown in Fig. 2, which

also represents the constellations Ursa Minor and Cassiopea.

The constellation Ursa Major (represented on the left), is easily
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recognized by its resemblance to the figure of a dipper, and may

be used to find the pole star by drawing a line through /3
and a

Fig. 2.

(called the Pointers), which will pass through the pole star a

Ursaj Minoris. A line drawn through 8 Ursse Majoris and the

pole star, will pass nearly through /3 Cassiopeas (represented on

the right).

16. What stars never set. If a circle were drawn through N,

the north point of the horizon, parallel to the equator, it would

cut off a portion of the celestial sphere having P for its centre,

all of which would be above the horizon
;
and a circle drawn

through S, the south point of the horizon, parallel to the equator,

would cut off a portion having P' for its centre, which would be

wholly below the horizon. Stars which are nearer to the visible

pole than the point N never set, and those which are nearer to

the invisible pole than the point S never rise.

17. Why a "knowledge of the dimensions of the earth is important.

The bodies of which astronomy treats are all (with the exception
of the earth) inaccessible. Hence, for determining their distances,

we are obliged to employ indirect methods. The eye can only

judge of the direction of objects, and is unable to determine di-

rectly their distances
;
but by measuring the bearings of an inac-

cessible object from two points whose distance from each other is

known, we may compute the distance of that object by the meth-
ods of trigonometry. In all our observations for determining the

distance of the celestial bodies, the base line must be drawn upon
the earth. It is therefore necessary to determine with the ut-

most precision the form and dimensions of the earth.
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18. Proof that the earth is globular. The figure of the earth is

nearly globular. This is proved,
1st. By its having been many times sailed round in different

directions. This fact can only be explained by supposing that

the earth is rounded
;
but it does not alone furnish sufficiently

precise information of its exact figure.

2d. By the phenomena of eclipses of the moon. These eclipses

are caused by the earth coming between the sun and moon, so

as to cast its shadow upon the latter. The form of this shadow
is always such as one globe would project upon another. Hence
we must admit that the earth is of a globular form unless we

deny that the eclipse is caused by the earth's shadow.

3d. By our seeing the top-mast of a ship, as it recedes from the

observer, after the hull has disappeared. If the earth was a plane

surface, the top-mast, having the smallest dimensions, should dis-

appear first, while the hull and sails, having the greatest dimen-

sions, should disappear last
; but, in fact, the reverse takes place.

Land is visible from the top-mast when it can not be seen from
the deck. The tops of mountains can be seen from a distance

when their base is invisible. The sun illumines the summits of

mountains long after it has set in the valleys. An asronaut, as-

cending in his balloon after sunset, has seen the sun reappear
with all the effects, of sunrise

;
and on descending, he has wit-

nessed a second sunset.

4th. If we travel northward, following a meridian, we shall find

the altitude of the pole to increase continually at the rate of one

degree for a distance of about 69 miles. This proves that a sec-

tion of the earth made by a meridian plane is very nearly a circle,

and also affords us the means of determining its dimensions, as

shown in Art. 20.



1(J ASTRONOMY.

19. First method of determining the earths diameter. The facts

just stated not only demonstrate that the earth is globular, but

afford us a rude method of computing its diameter. For this

purpose we measure the height of some mountain, and also the dis-

tance at which it can be seen at sea. Let BD represent a mountain

FiR 4 (Chimborazo, for example), 4 miles in height ;

and suppose the distance, AB, at which it can

be seen at sea, is 179 miles. Then, in the tri-

angle ABC, representing the radius of the

earth by R, we shall have

(R+4)
2=R2+1792

,

from which we find thatR 4000 miles nearly.

Thus we learn that the radius of the earth is

about 4000 miles. Similar observations made

in all parts of the earth, give nearly the same value for the ra-

dius, which can only be explained by supposing that^the earth

is nearly a sphere.

The earth is known to be globular by the most accurate meas-

urements, as will be more fully explained hereafter.

20. Second method of determining the earths diameter. Having
ascertained the general form of the earth, we wish to determine,

as accurately as we can, its diameter. For this purpose we first

ascertain the length of one degree upon its surface
;
that is, the

distance between two points on the earth's surface so situated

Fig 5 that the lines drawn from them to the centre of the earth

^S' may make with each other an angle of one degree.
Let P and P' be two places on the earth's surface, dis-

tant from each other about 70 miles, and let C be the

centre of the earth. Suppose two persons at the places
P and P' observe two stars S and S', which are at the

same instant vertically over the two places that is, in

the direction of plumb-lines suspended at those places.

Let the directions of these plumb-lines be continued

downward so as to intersect at C the centre of the earth.

The angle which the directions of these stars make at

P is SPS', and the angle as seen from C is SCS'
; but,

on account of the distance of the stars, these angles are

sensibly equal to each other. If, then, the angle SPS'
be measured, and the distance between the places P and
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P' be also measured by the ordinary methods of surveying, the

length of one degree can be computed. In this way it has been

ascertained that the length of a degree of the earth's surface is

about 69 statute miles, or 365,000 feet.

Since a second is the 3600th part of a degree, it follows that

the length of one second is one hundred feet very nearly.

Since the plumb-line is perpendicular to the earth's surface, its

change of direction in passing from one place to another may be

found by allowing one second for every hundred feet, or more

exactly by allowing 865,000 feet for each degree.

21. The circumference of the earth may be found approximately

by the proportion
1 degree : 360 degrees : : 69 miles : 24,840 miles

;

and hence the diameter is found to be about 7900 miles
;
which

results are a little too small, but may be employed as convenient

numbers for illustration.

The earth being globular, it is evident that the terms up and

down can not every where denote the same absolute direction.

The- term up simply denotes from the earth's centre, while down

denotes towards the earth's centre
;
but the absolute direction de-

noted by these terms at New York is very different from that

denoted by the same terms at London or Canton.

22. Irregularities of the earth's surface. The highest mountain

peaks do not exceed five miles in height, which is about -n^nr f

the earth's diameter. Accordingly, on a globe 16 inches in di-

ameter, the highest mountain peak would be represented by a

protuberance having an elevation of T~y inch, which is about

twice the thickness of an ordinary sheet of writing-paper. The

general elevation of the continents above the sea would be cor-

rectly represented by the thinnest film of varnish. In other

words, the irregularities of the earth's surface are quite insignifi-

cant in comparison with its absolute dimensions.

23. Cause of the diurnal motion. The apparent diurnal rotation

of the heavens may be caused either by a real motion of the ce-

lestial sphere, or by a real motion of the earth in a contrary di-

rection. The former supposition is felt to be absurd as soon as

we learn the distances and magnitudes of the celestial bodies.

B
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The latter supposition is in itself not improbable, and perfectly

explains all the phenomena. Moreover, we find direct proof of

the rotation of the earth, in the descent of a body falling from

a great height, which falls a little to the eastward of a vertical

The figure of the earth, which is not that of a perfect sphere, af-

fords independent proof of its rotation.

Analogy also favors the same conclusion. All the planets

which we have been able satisfactorily to observe, rotate on their

axes, and their figures are such as correspond to the time of their

rotation.

The rotation of the earth gives to the celestial sphere the ap-

pearance of revolving in the contrary direction, as the forward

motion of a boat on a river gives to the banks an appearance of

backward motion
;
and since the apparent motion of the heavens is

from east to west, the real rotation of the earth which produces that

appearance must be from west to east.

24. The earth's axis is the diameter around which it revolves

once a day. The extremities of this axis are the terrestrial poles;

one is called the north pole, and the other the south pole.

The terrestrial equator is a great circle of the earth perpendicu-

lar to the earth's axis.

Meridians are great circles passing through the poles of the

earth.

25. The latitude of a place is the arc of the meridian which ia

comprehended between that place and the equator. Latitude is

reckoned north and south of the equator, from to 90.

A parallel of latitude is any small circle on the earth's surface

parallel to the terrestrial equator. These parallels continually
diminish in size as we proceed from the equator to the pole.

The polar distance of a place is its distance from the nearest

pole, and is the complement of the latitude.

The longitude of a place is the arc of the equator intercepted
between the meridian of that place and some assumed meridian

to which all others are referred. The English reckon longitude
from the observatory of Greenwich, the French from the observa-

tory of Paris, and the Germans from the observatory of Berlin,

or from the island of Ferro, which is assumed to be 20 west of
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the observatory in Paris. In the United States we sometimes

reckon longitude from Washington, and sometimes from Green-

wich. Longitude is usually reckoned :east and west of the first

meridian, from to 180. The longitude and latitude of a place
determine its position on the earth's surface.

26. The latitude of a place. Let SJENQ represent the earth

surrounded by the distant starry sphere HZOK. The diameter

of the earth being insignificant in comparison with the distance

of the stars, the appearance of the heavens will be the same

Fig. C.

whether they are viewed from the centre of the earth, or from

any point on its surface. Suppose the observer to be at P, a

point on the surface between the equator M and the north pole
N. The latitude of this place is JEP, or the angle ^ECP. If the

line PC be continued to the firmament, it will pass through the

point Z, which is the zenith of the observer. If the terrestrial

axis KS be continued to the firmament, it will pass through the

celestial poles N' and S'. If the terrestrial equator ^EQ be con-

tinued to the heavens, it will constitute the celestial equator

.^E'Q'. The observer at P will see the entire hemisphere HZO,
of which his zenith Z is the pole. The other hemisphere will be

concealed by the earth.

The arc N'O -contains the same number of degrees as ^E'Z, and
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the arc ZW is the complement of ON'; that is, the altitude of the

visible pok is equal to the latitude of the place, and the zenith dis-

tance of the visible pole is the complement of the latitude.

27. How the latitude of a place may be determined. If there were

a star situated precisely at the pole, its altitude would be the lati-

tude of the place. The pole star describes a small circle around

the pole, and crosses the meridian twice in each revolution, once

above and once below the pole. The half sum of the altitudes in

these two positions is equal to the altitude of the pole ;
that is,

to the latitude of the place. The same result would be obtained

by observing any circumpokr star on the meridian both above

and below the pole.

28. Circles which pass through the two poles of the celestial

sphere are called hour circles. If two such circles include an arc

of 15 of the celestial equator, the interval between the instants

of their coincidence with the meridian will be one hour.

29. The right ascension of a star is the arc of the celestial equa-

tor comprehended between a certain point on the equator called

the first point of Aries, and an hour circle passing through that

star. Right ascension is sometimes expressed in degrees, min-

utes, and seconds of arc, but generally in hours, minutes, and sec-

onds of time. It is reckoned eastward from zero up to 2-1 hours,

or 360 degrees. If the hands of the sidereal clock be set to

Oh. Om. Os. when the first point of Aries is on the meridian, the

clock (if it neither gains nor loses time) will afterward indicate at

each instant the right ascension of any object which is then on

the meridian, for the motion of the hands of the clock corresponds

exactly with the apparent diurnal motion of the heavens. While
15 of the equator pass the meridian, the hands of the clock move

through one hour.

The sidereal day therefore begins when the first point of Aries

crosses the meridian, and the sidereal clock should always indi-

cate Oh. Om. Os. when the first of Aries is on the meridian.

30. The distance of an object from the celestial equator, meas-

ured upon the hour circle which passes through it, is called its

declination, and is north or south according as the object is on
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the north or south side of the equator. North declination is in-

dicated by the sign + ,
and south declination by the sign .

The position of an object on the firmament is indicated by its

declination and right ascension. Its declination expresses its dis-

tance north or south of the celestial equator, ancj its right ascen-

sion expresses the distance of the hour circle upon which it is sit-

uated, from a fixed point upon the celestial equator.

The north polar distance of a star is its distance from the north

pole.

31. A right sphere. The celestial sphere presents different ap-

pearances to observers in different latitudes. If the observer

were situated at the terrestrial equator, the poles would lie in the

horizon, the celestial equator would be perpendicular to the plane
of the horizon, and hence the horizon would bisect the equator
and all circles parallel to it. Therefore all celestial objects would

be for equal periods above and below the horizon, and they would

appear to rise perpendicularly on the eastern side of the horizon,

and set perpendicularly on the western side. Such a sphere is

called a right sphere, the diurnal motion being at right angles to

the horizon.

32. A parallel sphere. At one of the poles of the earth, the ce-

lestial pole being in the zenith, the celestial equator would coin-

cide with the horizon, and by the diurnal motion all celestial ob-

jects would move in circles parallel to the horizon. This is

called a parallel sphere. In a parallel sphere, an object upon
the equator will be carried by the diurnal motion round the hori-

zon, without either rising or setting.

33. An oblique sphere. At all latitudes between the equator and
the pole, the celestial equator is inclined to the horizon at an angle

equal to the distance of the pole from the zenith
;*
that is, equal

to the complement of the latitude. The parallels DF, GK, Fig. 6,

are unequally divided by the horizon
;
that is, all objects between

the celestial equator and the visible pole are longer above than

below the horizon, and all objects on the other side of the equa-
tor are longer below than above the horizon.

A parallel, BO, whose distance from the visible pole is equal to

the latitude, is entirely above the horizon
;
and the same is true
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of all parallels
still nearer to that pole.

Also the parallel HL,

whose distance from the invisible pole is equal to the latitude, is

entirely below the horizon
;
and the same is true of all parallels

still nearer to that pole. Hence, in the United States, stars within

a certain distance of the north pole never set, and stars at an

equal distance from the south pole never rise.

The circle BO is called the circle of perpetual apparition, be-

cause the stars which are included within it never set. The ra-

dius of this circle is equal to the latitude of the place.

The circle HL is called the circle of perpetual occullation, be-

cause the stars which are included within it never rise. The ra-

dius of this circle is also equal to the latitude of the place.

The celestial sphere here described is called an oblique sphere,

the diurnal motion being oblique to the horizon.

Whether the sphere be right or oblique, one half of the celes-

tial equator will be below the horizon, and the other half above

it. Every object on the equator will therefore be above the ho-

rizon during as long a time as it is below, and will rise and set

at the east and west points.

34. Effects of centrifugal force. We have discovered that the

earth has a globular figure, and that it rotates upon its axis once

in 24 sidereal hours. But, since the earth rotates upon an axis,

its form can not be thai of a perfect sphere; for every body revolv-

ing in a circle acquires a centrifugal force which tends to make it

recede from the centre of the circle. Every particle, P, upon the

earth's surface acquires, therefore, a force which acts in a direc-

Fig T. N tion, EP, perpendicular to the axis

of rotation. This centrifugal force,

which we will represent by PA, may
be resolved into two other forces PB
and PD, one acting in the direction

of a radius of the earth, and the other

at right angles to the radius. The

former, being opposed to the earth's

attraction, has the effect of diminish-

ing the weight of the body ;
the latter, being directed toward the

equator, tends to produce motion in the direction of the equator.
The intensity of the centrifugal force increases with the radius

of the circle described, and is therefore greatest at the equator.
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Moreover, the nearer the point is to the equator, the more direct-

ly is the centrifugal force opposed to the weight of the body.
The effects, therefore, produced by the rotation of the earth are,

1st. All bodies decrease in weight in going from the pole to the

equator; and,

2d. All bodies which are free to move, tend from the higher
latitudes toward the equator.

35. The effect of centrifugal force computed. Let A be a ball at-

tached to a string AS ;
let S be a fixed point, and ACE the circle

in which the ball revolves, and AC the arc Fig. s.

which the ball describes in a given time. When ^E^r~~~\
the ball was at A, it was moving in the direc- / \

tion of the tangent AB, and it would continue

in this direction if it were acted upon by no

other force than the first impulse ;
but we find V \

it deflected into the diagonal AC, and this diag- \^ \

onal is the resultant of two forces represented

by AB, AD. Now AB represents the path which the ball would
describe under the first impulse, and therefore AD represents the

motion impressed upon it by the tension of the string, and which

deflects the ball from the tangent to the circle.

AP 2

AD : AC :: AC : AE; whence AD= f-.
^xi.O

If Y represent the velocity of the revolving body expressed in

feet per second, and R the length of the string in feet, we shall

have the deflection from a tanent line

36. Centrifugal force compared with the force of gravity. "We

may compare the centrifugal force of a body with the force of

gravity, by comparing the spaces through which the body would

move in a given time, under the operation of these two forces.

LetW= the weight of the revolving body, C = its centrifugal

force, and #=16 feet, the space through whichW would fall free-

l in one second. Then we shall have

W.V2

whence C= '

.

2%
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We may also express the centrifugal force of a revolving body

by reference to the number of revolutions made iii a given time.

Let N represent the number of revolutions, or the fraction of a

revolution performed by the body in one second. The circum-

ference of the circle which the body describes will be 27rR The

space through which the body moves in one second, that is, its

velocity, is 27J-K.N. Hence we have

wwr=M xRN ,.W=1 .2275 xRmw.

The amount of the loss of weight produced at the equator by

centrifugal force, may be computed as follows :

The radius of the equator is 20,923,600 feet; and since the

time of one rotation is 23h. 56m. 4s., or 86164 seconds,N=-5^^

Hence = 1.2275 x 20,923,600 x r,
* W,

Thus we find that at the equator the centrifugal force of a body

arising from the earth's rotation, is -^y part of the weight; and

since this force is directly opposed to gravity, the weight must

sustain a loss of ir|ir part.

37. Centrifugal force at any latitude. The centrifugal force at

the equator is to the centrifugal force in any other latitude as

radius to the cosine of \he latitude. But the entire centrifugal

force at any latitude is to that part of the centrifugal force which

is opposed to the weight of the body, as radius to the cosine of

the latitude
;
that is, the loss of weight of a body caused by the

centrifugal force at any latitude, is -^ of the weight multiplied

by the square of the cosine of the latitude.

38. Effect of centrifugal force t/^on the form of a body. A por-

tion, PD, of the centrifugal force causes a tendency to move to-

ward the equator. If the surface of the globe were entirely solid,

this tendency would be counteracted by the cohesion of the par-
ticles. But since a portion of the earth's surface is fluid, this

portion must yield to the centrifugal force, and flow toward the

equator. Thus the water must recede from the higher latitudes

in either hemisphere, and accumulate around the equator. The
earth, therefore, instead of being an exact sphere, must become
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an oblate spheroid. A globe consisting of any plastic material

would be reduced to such a figure by causing it to rotate rapidly

upon 'an axis. The amount of the elliptic!ty of the earth must

depend upon the centrifugal force, and the attraction exerted by
the earth upon bodies placed on its surface.

39. Weight, of a body at the2)ole and the equator. "We have found

that at the equator the loss of weight due to centrifugal force is

2-j-g-.
From a comparison of observations of the length of the

seconds' pendulum made in different parts of the globe, it is

found that the weight of a body at the pole actually exceeds its

weight at the equator, by -5-^-5-.

The difference between these fractions is TTT Trg-^= Ts-u 5
that

is, the actual attraction exerted by the earth upon a body at the

equator is less than at the pole, by the 590th part of the whole

weight. This difference is due to the elliptic form of the merid-

ians, by which the distance of the body at the equator from the

centre of the earth is increased.

40. How an arc of a meridian is measured. Numerous arcs of

the meridian have been measured, for the purpose of accurately

determining the figure and dimensions of the

earth. These arcs are measured in the fol-

lowing manner:

A level spot of ground is selected, where a

base line, AB, from five to ten miles in length, c

is measured with the utmost precision. A
third station, C, is selected, forming with the

base line a triangle as nearly equilateral as is

convenient. The angles of this triangle are

measured with a theodolite, and the two re-

maining sides may then be computed. A
fourth station, D, is now selected, forming with

two of the former stations a second triangle,

in which all the angles are measured; and

since one side is already known, the others

may be computed. A fifth station, E, is then

selected, forming a third triangle; and thus

we proceed forming a series of triangles, fol-

lowing nearly the direction of a meridian.

rig. 9.
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Having determined by astronomical observations the azimuth

of one of the lines, AB, that is, its inclination to a meridian line,

we can compute how much any station, A, is north of any other

station, II. The latitude of each of these stations being deter-

mined, we know the distance in miles which corresponds to a

given difference of latitude, and hence, by a proportion, we can

find the length of an arc of one degree. This method of survey-

ing is susceptible of great precision, because we may choose the

most favorable site for measuring a base line; and after this

nothing more is required but the measurement of angles, which,

with a large theodolite, can be done with extreme accuracy.

41. Verification of the icork. In order to verify the entire work,

a second base line is measured near the end of the series of tri-

angles, and we compare its measured length with the length as

computed from the first base, through the intervention of the

series of triangles. In the survey of the coast of the United States,

three base lines have been measured east of New York, the short-

est being a little more than five miles in length, and the longest
more than ten miles, and the two extreme bases are distant from

each other 430 miles in a direct line. In one instance, the ob-

served length of a base differs from its length deduced from one of

the other bases by six inches; in the other cases the discrepancy
does not exceed three inches. This coincidence proves that none
but errors of extreme minuteness have been committed in the

determination of the position of the intermediate stations stretch-

ing from the city of New York to the eastern boundary of Maine.

42. Results of measurements. In the manner here described,
arcs of a meridian have been measured in nearly every country
of Europe. These surveys form a connected chain of triangles,

extending from the North Cape, in lat. 70 40', to an island in the

Mediterranean in lat. 38 42'; and a survey is now in progress
extending across the Mediterranean through Algeria, and is to be
continued to the Sahara. An arc has been measured in India

extending from lat. 29 26' to lat 8 5'. An arc has been meas-
ured in South America extending from the equator to more than
three degrees of south latitude. An arc of over four degrees has
also been measured in South Africa. The survey of the eoajst of
the United States will ultimately furnish several important arcs
of a meridian, but these observations are not yet fully reduced.
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These measurements enable us to determine with great accuracy
the length of a degree of latitude for the. entire distance from the

equator to the north pole. The results are

A degree at the equator=68.702 miles, or 362,748 feet.
"

inlat. 45 =69.048 "
"364,572

"

"
at the pole =69.396 "

"366,410
"

A degree at the pole ) _ u u
minus a degree at equator f

= 3
'
662

43. Conclusion from these results. If the earth were perfectly

spherical, a terrestrial meridian would be an exact circle, and ev-

ery part of it would have the same curvature
;
that is, a degree

of latitude would be every where the same. But we have found

that the length of a degree increases as we proceed from the

equator toward the poles, and the amount of this difference af-

fords a measure of the departure of a meridian from the figure of

a circle.

The plumb-line must every where be perpendicular to the sur-

face of tranquil water, and can not, therefore, every where point

exactly toward the earth's centre. Let A, B be two plumb-lines

suspended on the same meridian near

the equator, and at such a distance

from each other as to be inclined at

an angle of 1. Let C and D be two

other plumb-lines on a meridian near

one of the poles, also making with

each other an angle of 1. The dis-

tance from A to B is found to be less than from C to D, from

which we conclude that the meridian curves more rapidly near

A than near C.

It is found that all the observations in every part of the world

are very accurately represented by supposing the meridian to be

an ellipse, of which the polar diameter is the minor axis.

The equatorial diameter of this ellipse is 7926.708 miles,

the polar diameter " " " 7899.755 "

the difference is 26.953 "

That is, the equatorial diameter exceeds the polar diameter by
-jl^th of its length. This difference is called the ellipticity of the

earth.

The meridional circumference of the earth is 24,857.5 miles.
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From measurements which have been made at right angles tc

the meridian, it appears that the equator and parallels of latitude

are very nearly, if not exactly, circles. Hence it appears that the

form of the earth is that of an oblate spheroid; which is a solid

generated by the revolution of a semi-ellipse about its minor axis.

44. Loss of weight at the equator explained. It has been mathe-

matically proved that a spheroid whose ellipticity is ^^7, and

whose mean density is double the density at the surface, exerts

an attraction upon a particle placed at its pole, greater by -s-g-uth.

part than the attraction upon a particle at its equator ;
and this

we have seen is the fraction which must be added to the loss of

weight by centrifugal force, to make up the total loss of weight at

the equator, as shown by experiments with the seconds' pendulum.
This coincidence may be regarded as demonstrating that the

earth does rotate upon its axis once in 24 hours.

45. Equatorial protuberance. If a sphere be conceived to be in-

rig. it ^^*r^^ scribed within the terrestrial spheroid, hav-

ing the polar axis NS for its diameter, a

spheroidal shell will be included between its

)

D surface and that of the spheroid, having a

thickness, AB, of 13 miles at the equator, and

becoming gradually thinner toward the poles.
This shell of protuberant matter, by means

of its attraction, gives rise to many important phenomena, as will

be explained hereafter.

Tlie Density of tie Earth.

46. Three methods have been practiced for determining the

average density of the earth. These methods are all founded
upon the principle of comparing the attraction which the earth
exerts upon any object, with the attraction which some other

-body, whose mass is known, exerts upon the same object.
First metiiod.Ry comparing the attraction of the earth with

that of a small mountain.

^

In 1714, Dr.Maskelyne determined the ratio of the mean den-
pity of the earth to that of a mountain in Scotland, called Sche-
hallien, by ascertaining -how much the local attraction of the
fountain deflected a plumb-line from a vertical position. This
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Fig. 12.

mountain stands alone on an extensive plain, so that there are no

neighboring eminences to affect the plumb-line. Two stations

were selected, one on its northern and the other on its southern

side, and both nearly in the same meridian. A plumb-line, at-

tached to an instrument called a zenith

sector, designed for .measuring small ze-

nith distances, was set up at each of these

stations, and the distance from the direc-

tion of the plumb-line to a certain star

was measured at each station, the instant

that the star was on the meridian. The
difference between these distances gave
the angle formed by the two directions

of the plumb-lines AE, CG. Were it not

for the mountain, the plumb-lines would take the positions AB,
CD

;
and the angle which they would, in that case, form with each

other, is found by measuring the distance between the two sta-

tions, and allowing about one second for every hundred feet.

In Dr. Maskelyne's experiment, the distance between the two

stations was 4000 feet; so that if the direction of gravity had not

been influenced by the mountain, the inclination of the plumb-
lines at the two places would have been 41 seconds. The inclina-

tion was actually found to be 55". The difference, or 12", is to

be ascribed to the attraction of the mountain. It was computed
that if the mountain had been as dense as the interior of the earth,

the disturbance would have been about 21". Therefore, the ra-

tio of the density of the mountain to that of the entire earth, was

that of 12 to 21.

The mean density of the mountain was ascertained by numer-

ous borings to be 2.75 times that of water. Hence the mean

density of the earth was concluded to be 4.95 times that of

water.

In the year 1855, observations were made for ascertaining the

deviation of the plumb-line produced by the attraction of Arthur's

Seat, a hill 822 feet high, near Edinburg, from which the mean

density of the earth was computed to be 5.32.

47. Second method. The mean density of the earth has been

determined by experiments with the torsion balance.

In the year 1798, Cavendish compared the attraction of the
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earth with the attraction of two lead balls, each of which was one

foot in diameter. The bodies upon which their attraction was

exerted were two leaden balls, each about two inches in diameter.

They were attached to the ends of a slender wooden rod six feet

in length, which was supported at the centre by a fine wire 40

incheslong. The balls, if left to themselves, will come to rest

when the supporting wire is entirely free from torsion, but a very

slight force is sufficient to turn it out of this plane. The position

ofhe supporting rod was accurately observed with a fixed tel-

escope. The large balls were then brought near the small ones,

but on opposite sides, so that the attraction of both balls might

conspire to twist the wire in the same direction, when it was

found that the small balls were sensibly attracted by the larger

ones, and the amount of this deflection was carefully measured.

The large balls were then moved to the other side of the small

ones, when the rod was found to be deflected in the contrary di-

rection, and the amount of this deflection was recorded. This

experiment was repeated seventeen times.

These experiments furnish a measure of the attraction of the

large balls for the small ones, and hence we can compute what

would be their attraction if they were as large as the earth. But

we know the attraction actually exerted by the earth upon the

Email balls, it being measured by the weight of the balls. Thus
we know the attractive force of the earth compared with that of

the lead balls; and since we know the density of the lead, we
can compute the average density of the earth. From these ex-

periments, Cavendish concluded that the mean density of the

c%arth was 5.45.

These experiments were repeated by Dr. Reich, at Frcyberg,
in Saxony, in the year 1836, and the mean of 57 trials gave a re-

sult of 5.44.

In the years 1841-'2 a similar series of experiments was con-

ducted with the greatest care by Sir Francis Baily in England,
and from over 2000 trials he concluded the mean density of the

earth to be 5.67.

48. Third method. The mean density of the earth may be de-

termined by means of pendulum experiments at the top and bot-

tom of a deep mine. The rate of vibration of a pendulum de r

pends upon the intensity of the earth's attraction, and thus be-
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comes a measure of this intensity. If we vibrate the same pen-

dulum at the top and bottom of a mine whose depth is 1000 feet,

we shall have, a measure of the force of gravity at the bottom of

the mine compared with the force at the top. Now at the top of

the mine the pendulum is attracted by every particle of matter in

the globe ; but, since a spherical shell may be shown to exert no

influence upon a point situated within it, the pendulum at the

bottom of the mine will only be influenced by a sphere whose ra-

dius is 1000 feet less than that of the earth. We thus obtain the

attraction of this external shell, whose thickness is 1000 feet, com-

pared with the attraction of the entire globe; and since the vol-

umes of both these bodies may be computed, we are able to de-

duce the average density of the globe, compared with that of the

external shell. Now, by actual examination, we can determine

the density of the strata penetrated by the mine, and hence we
are able to compute the mean density of the globe.

This method was applied in one of the mines of England, near

Newcastle, in the year 1854. The depth of the mine was 1256

feet; and it was found that a pendulum which vibrated seconds

at the top of the mine, when transferred to the bottom of the

mine gained 2^ seconds per day. From this it was computed
that the force of gravity at the bottom of the mine was 15 ^ 8C

greater than at the top of the mine
;
and hence it was computed

that the average density of the globe was 2.62 times that of the

external shell. By actual examination, it was found that the av-

erage density of the rocks penetrated by the mine was 2.5, whence
it follows that the mean density of the earth is 6.56.

49. Fourth method. In a somewhat similar manner, we may
determine the density of the earth by comparing the length of

the pendulum vibrating seconds on the summit of a mountain,
with that at the base of the mountain. In 1824, the vibrations

of a pendulum on Mount Cenis, in Italy, at an elevation of 6734

English feet, were compared with the vibrations near the level of

the sea, and the density of the earth was hence deduced to be 4.84.

The average of these seven determinations is 5.46, which must

be a tolerable approximation to the truth.

These results verify, in a remarkable manner, the conjecture of

Newton, who, in 1680, estimated that the average density of the

earth was 5 or 6 times greater than that of water.
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50. Volume and weight of die earth. Having determined the di-

mensions of the earth, we can easily compute its volume, and,

knowing its density, we can also compute its weight. Its volume

is found to contain

259,400 millions of cubic miles.

Also the total weight of the earth is 6 sextillions of tons a

number expressed by the figure 6 with 21 ciphers annexed.

51. Direct proof of the earth's rotation. A direct proof of the

earth's rotation is derived from observations of a pendulum. If

a heavy ball be suspended by a flexible wire from a fixed point,

and the pendulum thus formed be made to vibrate, its vibrations

will all be performed in the same plane. If, instead of being sus-

pended from a fixed point, we give to the point of support a slow

movement of rotation around a vertical axis, the plane of vibra-

tion will still remain unchanged. This may be proved by hold-

ing in the fingers a pendulum composed of a simple ball and

string, and causing it to vibrate. Upon twirling the string be-

tween the fingers, the ball will be seen to rotate on its axis, with-

out, however, changing its plane of vibration.

Suppose, then, a heavy ball to be suspended by a wire from a

fixed point directly over the pole of the earth, and made to vi-

brate
;
these vibrations will continue to be made in the same in-

variable plane. But the earth meanwhile turns round at the rate

of 15 per hour; and since the observer is unconscious of his own
motion of rotation, it results that the plane of vibration of the

pendulum appears to revolve at the same rate in the opposite di-

rectidn.

If the pendulum be removed to the equator, and set vibrating
in the direction of a meridian, the plane of vibration will still re-

main unchanged; and since, notwithstanding the earth's rotation,
this plane always coincides with a meridian, the plane of vibra-

tion appears to remain unchanged.

52. Phenomena in the middle latitudes. At places intermediate
between the pole and the equator, the apparent motion of the

plane of vibration is less than 15 per hour, and diminishes as we
recede from the poK This may be proved in the following man-
ner:
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Let NPSE represent a meridian of

the earth, AP a tangent to this circle

at P, meeting the earth's axis produced
in A. Suppose a pendulum to be set

up at the point P, and vibrated in the

plane of the meridian. When by the

rotation of the earth the point P is

brought to P', the plane of vibration

will tend to preserve its parallelism
w '

with the plane ACP ;
but the merid-

ian of the place will have the posi-

tion AP'C
;
that is, the plane of vibra-

tion will now make an angle AP'B,
or PAP', with the plane of the meridian. If the angle PAP' be

taken very small, the figure PAP' may be regarded as a plane

triangle, and the sine of the angle PAP', or the angle PAP', will

pp/
be equal to -T-TJ. But PP', which is the distance between the two

meridians measured on a parallel of latitude, varies as the cosine

of the latitude (Loomis's Trigonometry, Art. 197, Cor.) ;
and AP

is the tangent of PN, or the cotangent of the latitude. Hence

the angle PAP' varies as '.
-

;
that is, as the sine of the lati-

cot. lat '

tude
;
or the apparent motion of the plane of vibration is every

where proportional to the sine of the latitude of the place.

The hourly motion of the plane of vibration of a pendulum set

up at New Haven is therefore equal to 15 X sin. 41 18', which is

a little less than 10 per hour.

If we suppose tangents to be drawn to each meridian circle at

its intersection with the parallel PP', all these tangents will inter-

sect at the point A. These tangents lie on the surface of a cone

whose base is the parallel PP'. If we suppose the surface of this

cone to be spread out upon a plane, it will form a sector of a

circle, and the angle at the centre is equal to the motion of the

plane of vibration of the pendulum in 24 hours at a place on the

parallel PP'.

It is indispensable to the success of this experiment that the

pendulum should commence its vibration without any lateral

motion. For this purpose, the pendulum is drawn out of the

vertical position, and tied to a fixed object by a fine thread.

C
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When the ball is quite at rest, the thread is burned, and the pen-

dulum commences its vibrations. Experiments of this kind have

been made at numerous places, and the observed rate of motion

coincides very accurately with the computed rate, and this coin-

cidence may be regarded as a direct proof that the earth makes

one rotation upon its axis in 24 sidereal hours.

63. Second proof of the earth's rotation. A second proof of the

earth's rotation is derived from the motion of falling bodies. If

. the earth had no rotation upon an axis, a heavy body let fall from

any elevation would descend in the direction of a vertical line.

But if the earth rotates on an axis, then, since the top of a tower

describes a larger circle than the base, its easterly motion must be

more rapid than that of the base. And if a ball be dropped from

the top of the tower, since it has already the easterly motion

which belongs to the top of the tower, it will retain this easterly

motion during its descent, and its deviation to the east of the ver-

tical line will be nearly equal to the excess of the motion of the

top of the tower above that of the base, during the time of fall.

Let AB represent a vertical tower, and AA' the space through

rig. 14.
which the point A would be carried by the earth's ro-

tation in the time that a heavy body would descend

through AB. A body let fall from the top of the

tower will retain the horizontal velocity which it had

at starting, and, when it reaches the earth's surface^

will have moved over a horizontal space, BD, nearly

equal to AA'. But the foot of the tower will have

moved only through BB', so that the body will be

found to the east of the tower by a space equal to B'D

nearly. This space B'D, for an elevation of 500 feet,
c in the latitude of New Haven, is a little over one inch,

so that it must be impossible to detect this deviation except from

experiments conducted with the greatest care and from an eleva-

tion of several hundred feet.

54. Results of experiments. Numerous experiments have been

made for the purpose of detecting the deviation of falling bodies

from a vertical line. In the year 1791 this method was first tried

at Bologna, in Italy, from a tower whose height was 256 English
feet. The results were not satisfactory, the experiments not hav-

ing been conducted with the requisite care.
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In 1802 the experiments were repeated at Hamburg, from a

tower whose height was 250 English feet, and the observed devia-

tion from the vertical differed only 0.01 inch from the deviation

computed by theory. In 1804 the experiments were repeated near

Diisseldorf, in a mine whose depth was 280 feet, and the observed

deviation differed only 0.04 inch from the computed deviation.

The most satisfactory experiments were made in 1832 at

Freyberg, Saxony, in a mine whose depth was 520 English feet.

According to the mean of 106 trials, the easterly deviation was

1.12 inch, while the deviation by theory should have been 1.08

inch. The experiments also showed a southerly deviation of 0.17

inch, which is not accounted for by theory.

These experiments must be regarded as proving that the earth

does rotate upon an axis, although the results exhibit discrepan-

cies greater than might have been anticipated, and which, per-

haps, are not fully explained.

ARTIFICIAL GLOBES.

55. Artificial globes are either terrestrial or celestial. The

former exhibits a miniature representation of the earth, the lat-

ter exhibits the relative position of the fixed stars. The mode
of mounting is usually the same for both, and many of the cir-

cles are the same for both globes. An artincial globe is mount-

ed on an axis which is supported by a brass ring, which repre-

sents a meridian, and is called the brass meridian. This ring is

supported in a vertical position by a frame in such a manner

that the axis of the globe can be inclined at any angle to the

horizon. The brass meridian is graduated into degrees, which

are numbered from the equator toward either pole. The horizon

is represented by a broad ring, whose plane passes through the

centre of the globe. It is also graduated into degrees, which are

numbered in both directions from the north and south points, to

denote azimuths; and there is usually another set of numbers

which begin from the east and west points, to denote amplitudes.

It also usually contains the signs of the ecliptic, showing the

sun's place for every day in the year.

On the terrestrial globe, hour circles are represented by great

circles drawn through the poles of the equator; and on the ce-

lestial globe corresponding circles are drawn through the poles

of the ecliotiCj and a series of small circles parallel to the ecliptic
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are drawn at intervals of ten degrees. These are for determining

celestial latitude and longitude. The ecliptic, tropics, and polar

circles are drawn upon the terrestrial globe, as well as upon the

celestial.

About the north pole is a small circle, graduated so as to indi-

cate hours and minutes, while a small index, attached to the brass

meridian, points to one of the divisions upon this hour circle.

This index can be moved so as to be set in any required posi-

tion.

There is usually a flexible strip of brass, equal in length to one

quarter of the circumference of the globe, which is graduated into

degrees, and may be applied to the surface of the globe so as to

measure the distance between two places, or the altitude of any

point above the wooden horizon. Ilence it is usually called the

quadrant of altitude.

PROBLEMS ON THE TERRESTRIAL GLOBE.

56. To find the latitude and longitude of a given place.

Turn the globe so as to bring the place to the graduated side

of the brass meridian
;
then the degree of the meridian directly

over the place will indicate the latitude, and the degree on the

equator under the brass meridian will indicate the longitude.

Example. What are the latitude and longitude of Cape Horn ?

57. Given the latitude and longitude, to find the place.

Bring the degree of longitude on the equator under the brass

meridian, then under the given latitude on the brass meridian

will be found the place required.

Example. Find the place which is situated in Lat. 30 N. and

Long. 90 W.

58. To find the bearing and distance from one place to anotfier on
the earth's surface.

Elevate the north pole to the latitude of the first -mentioned

place, and bring this place to the brass meridian. Screw the

quadrant of altitude to this point of the brass meridian, and make
it pass through the other place. Then the bearing of the second

place from the first will be indicated on the wooden horizon, and
the number of degrees on the quadrant of altitude will show the
distance between the two places in degrees, which may be reduced
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to miles by multiplying them by 69-j, because 69^ miles make

nearly one degree.

Example. What is the bearing and distance of Liverpool from

New York?

59. To find the antipodes of a given, place.

Bring the given place to the wooden horizon, and the opposite

point of the horizon will indicate the antipodes. The one place
will be as far from the north point of the wooden horizon, as the

other is from the south point.

Example. Find the antipodes of London.

60. Given the hour of the day at any place, to find the liour at any
other place.

Bring the first-mentioned place to the brass meridian, and set

the hour index to the given time. Turn the globe till the other

place comes to the meridian
;
the hour circle will show the re-

quired time.

Example. What time is it at San Francisco when it is 10 A.M.

in New York ?

61. To find the time of the surCs rising and setting at a given place,

on a given day.

Elevate the pole to the latitude of the place. On the wooden
horizon find the day of the month, and against it is given the

sun's place in the ecliptic, expressed in signs and degrees. Bring
the sun's place to the meridian, and set the hour index to 12.

Turn the globe till the sun's place is brought down to the east-

ern horizon
;
the hour index will show the time of rising. Turn

the globe till the sun's place comes to the western horizon
;
the

hour index will tell the time of setting.

Example. Eequired the time of rising and setting of the sun at

Washington, August 18th.

22S803
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CHAPTER II.

INSTRUMENTS FOR OBSERVATION. THE CLOCK. TRANSIT IN-

STRUMENT. MURAL CIRCLE. ALTITUDE AND AZIMUTH IN-

STRUMENT, AND THE SEXTANT.

62. Why observations are chiefly made in the meridian. When-

ever 'circumstances allow an astronomer to select bis own time of

observation, almost all his observations of the heavenly bodies are

made when they are upon the meridian, because a large instru-

ment can be more accurately and permanently adjusted to de-

scribe a vertical plane than any plane oblique to the horizon
;
and

there is no other vertical plane which combines so many advant-

ages as the meridian. The places of the heavenly bodies are most

conveniently expressed by right ascension and declination, and

the right ascension is simply the time of passing the meridian, as

shown by a sidereal clock. Moreover, when a heavenly body is

at its upper culmination, its refraction and parallax are the least

possible; and in this position refraction and parallax do not af-

fect the right ascension of the body, but simply its declination;

while for every position out of the meridian, they affect both

right ascension and declination.

63. The Clock. The standard instruments of an astronomical

observatory are the clock, the transit instrument, and the mural

circle.

In a stationary observatory, a pendulum clock is used for meas-

uring time. The clock should be so regulated that if a star be

observed upon the meridian at the instant when the hands point
to Oh. Om. Os., they "will point to Oh. Om. Os. when the same star is

next seen on the meridian. This interval is called a sidereal day,
and is divided into 24 sidereal hours. If the clock were perfect,

the pendulum would make 86,400 vibrations in the interval be-

tween two successive returns of the same star to the meridian.

But no clock is perfect, and it is therefore necessary to determine

the error and rate of the clock daily, and in all our observations

to make an allowance for the error of the clock.
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The error of a clock at any time is its difference from true side-

real time. The rate of the clock is the change of its error in 24

hours. Thus, if, on the 8th of January, when Aldebaran passed
the meridian, the clock was found to be 30.84s. slow, and on the

9th of January, when the same star passed the meridian, the clock

was 31.66s. slow, the clock lost 0.82s. per day. In other words, the

error of the clock January 9th was 31.66s, and its daily rate

-0.82s.

The Transit Instrument.

64. Most of the observations of the heavenly bodies are made
when they are upon the celestial meridian

; and, in many cases,

the sole business of the observer is to determine the exact instant

when the object is brought to the meridian, by the apparent di-

urnal motion of the firmament. This phenomenon of passing the

meridian is called a transit, and an instrument, mounted in such a

manner as to enable an observer, supplied with a clock, to ascer-

tain the exact time of transit, is called a transit instrument.

65. Description of the Tran-

sit Instrument. Such an in-

strument consists of a tele-

scope, TT, mounted upon an

axis, AB, at right angles to

the tube, which axis occupies
a horizontal position, and

points east and west. The

tube of the telescope, when

horizontal, will therefore be

directed north and south
;
and

if the telescope be revolved

on its axis through 180, the

central line of the tube will

move in the plane of the me-

ridian, and may be directed

to any point on the celestial

meridian.

For a large transit instru-

ment, two stone piers, PP, are

erected on a- solid foundation,

Fig 15
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standing on an east and west line. On the top of each of the

piers is secured a metallic support, in the form of the letter Y, to

receive the extremities of the axis of the telescope. At the left

end of the axis there is a screw, by which the Y of that extrem-

ity may be raised or lowered a little, in order that the axis may
be made perfectly horizontal. At the right end of the axis is a

screw, by which the Y of that extremity may be moved backward

or forward, in order to enable us to bring the telescope into the

plane of the meridian. In order that the pivots of the axis may
be relieved from a portion of the weight of the instrument, there

is raised upon the top of each pier a brass pillar supporting a

lever, from one end of which hangs a hook passing under one

extremity of the axis, while a counterpoise sliding on the other

end of the lever may be made to support as much of the weight
of the instrument as is desired.

66. The Spirit Level. When the instrument is properly adjust-

ed, its axis will be horizontal, and directed due east and west. If

the axis be not exactly horizontal, its deviation may be ascer-

tained by placing upon it a spirit level. This consists of a glass

Fi<T 1C tube, AB, nearly filled with alcohol

c
D

__D___
or ether. The tube forms a portion

j/T^= ^^~"H~?lii
f a rmS f a verJ large radius, and

1
-==v

when it is placed horizontally, with

its convexity upward, the bubble, CD, will occupy the highest po-
sition in the middle of its length. A graduated scale is attached

to the tube, by which we may measure any deviation of the bub-

ble from the middle of the tube.

To ascertain whether the axis of the telescope is horizontal, ap-

ply the level to it, and see if the bubble occupies the middle of

the tube. If it does not, one end must be elevated or depressed.
In order to accomplish this, one of the supports of the axis is con-

structed so as to be moved vertically through a small space by
means of a fine screw. The level must now be taken up and re-

versed end for end, and this operation must be repeated until the

bubble rests in the middle of the tube in both positions of the

level.

67. Mttiiod of observing trajtsits. In the focus of the eye-piece
of the transit instrument, at F, is placed a system of 5 or 7 equi-
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Fig. IT.

X

X

distant and vertical wires, intersected by 1 or

2 horizontal wires. When the instrument has

been properly adjusted, the middle wire, MN,
will be in the plane of the meridian, and when

an object is seen upon it, this object will be

on the celestial meridian. The fixed stars ap-

pear in the telescope as bright points of light

without sensible magnitude, and by the di-

urnal motion of the heavens a star is carried successively over

each of the wires of the transit instrument. The observer, just

before the star enters the field of view, writes down the hour and

minute indicated by the clock, and proceeds to count the seconds

by listening to the beats of the clock, while his eye is looking

through the telescope. He observes the instant at which the star

crosses each of the wires, estimating the time to the nearest tenth

of a second
;
and by taking a mean of all these observations, he

obtains with great precision the instant at which the star passed
the middle wire, and this is regarded as the true time of the

transit. The mean of the observations over several wires, is con-

sidered more reliable than an observation over a single wire.

In many observatories it is now customary to employ the elec-

tric circuit to record transit observations. By pressing the finger

upon a key at the instant a star is seen to pass one of the wires

of the transit, a mark is made upon a sheet of paper which is

graduated into seconds by the pendulum of the observatory clock,

according to the mode more fully explained in Art. 337.

During the day, the wires are visible as fine black lines stretch-

ed across the field of view. At night they are rendered visible

by a lamp, L, by which the field of view is faintly illumined.

"When we observe the sun or any object which has a sensible

disc, the time of transit is the instant at which the centre of the

disc crosses the middle wire. This time is obtained by observing
the instants at which the eastern and western edges of the disc

touch each of the wires in succession, and taking the mean of all

the observations. When the visible disc is not circular, special

methods of reduction are employed.

68. Rate of the diurnal motion. Since the celestial sphere re

voives at the rate of 15 per hour, or 15 seconds of arc in one

second of time, the space passed over between two successive
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beats of the pendulum will be 15" of arc. When the sun is on

he equator, and its apparent diameter is 32' of arc, the interval

between the contacts of the east and west limbs with the middle

wire will be 2m. 8s.

69. To adjust a transit instrument to the meridian. A transit in-

strument may be adjusted to describe the plane of the meridian,

by observations of the pole star. Direct the telescope to the pole

star at the instant of its crossing the meridian, as near as the time

can be ascertained. The transit will then be nearly in the plane

of the meridian. Having leveled the axis, turn the telescope to

a star about to cross the meridian, near the zenith. Since every
vertical circle intersects the meridian at the zenith, a zenith star

will cross the field of the telescope at the same time, whether the

plane of the transit coincide with the meridian or not. At the

moment the star crosses the central wire, set the clock to the star's

right ascension which is given by the star catalogues, and the

clock will henceforth indicate nearly sidereal time. The approxi-
mate times of the upper and lower culminations of the pole star

are then known. Observe the pole star at one of its culminations,

following its motion until the clock indicates its right ascension,

or its right ascension plus 12 hours. Move the whole frame of

the transit so that the central wire shall coincide nearly with the

star, and complete the adjustment by means of the azimuth screw.

The central wire will now coincide almost precisely with the me-
ridian of the place.

70. Final verification. The axis being supposed perfectly hori-

zontal, if the middle wire of the telescope is exactly in the merid-

ian, it will bisect the circle which the pole star describes in 24 si-

dereal hours round the polar point. If, then, the interval between
the upper and lower culminations is exactly equal to the interval

between the lower and upper, the adjustment is complete. But
if the time elapsed while the star is traversing the eastern semi-

circle, is greater than that of traversing the western, the plane in

which the telescope moves is westward of the true meridian on
the north horizon

;
and vice versa if the western interval is great-

est. This error of position must be corrected by turning the azi-

muth screw. The adjustment must then be verified by further

observations, until, by continued approximations, the instrument
is fixed correctly in the meridian.
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Other methods of adjusting a transit instrument to the plane

of the meridian, will be found in works specially devoted to Prac-

tical Astronomy.

The Mural Circle.

71. The mural circle is a graduated circle, aaaa, usually made

of brass, and having an axis passing through its centre. This axis

should be exactly horizontal
;
and it is supported by a stone pier

or wall, so as to be directed due east and west. To the circle is

attached a telescope, MM, so that the entire instrument, including

the telescope, turns in the plane of the meridian.

Fig. 18.

Mural circles have been made eight feet in diameter, but gen-

erally they have been made six feet
;
and at present astronomers

are pretty well agreed that a circle of five feet is better than any

larger size, being less liable to change of form from its great

weight. At the great Russian observatory at Pulkova, the largest

circle employed is only four feet in diameter. The circle is di-

vided into degrees, and subdivided into spaces of five minutes,
and sometimes of two minutes, the divisions being numbered from

to 360 round the entire circle. The smallest spaces on the
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limb are further subdivided to single seconds, sometimes by a ver-

nier, but generally by a reading microscope.

72. Use of the Vernier. A vernier is a scale of small extent,

graduated in such a manner that, being moved by the side of a

fixed scale, we are enabled to measure minute portions of this

scale. The length of this movable scale is equal to a certain num-

ber of parts of that to be subdivided
;
but it is divided into parts

either one more, or one less, than those of the primary scale taken

for the length of the vernier. Thus, if we wish to measure hund-

redths of an inch, as in the case of a barometer, we first divide an

inch into ten equal parts. We then construct a vernier equal in

length to 11 of these divisions, but divide it into 10 equal parts,

by which means each division on the vernier is -^th longer than

a division of the primary scale.

rig. 19. Thus, let AB be the upper end of a ba

rometer tube, the mercury standing at the

point C ;
the scale is divided into inches and

-50 tenths of an inch, and the middle piece, num-

bered from 1 to 9, is the vernier, that may
be slid up or down, and having 10 of its di-

visions equal to 11 divisions of the scale;

that is, to -|4ths of an inch. Therefore, each

division of the vernier is -^^ths of an inch
;

or one division of the vernier exceeds one

division of the scale, by Trc-th of an inch.

Now, as the sixth division of the vernier (in

the figure) coincides with a division of the

scale, the fifth division of the vernier will

of an inch above the nearest division of the scale
;

the fourth division -rfo-ths of an inch
;
and the top of the vernier

will be -nnrths of an inch above the next lower division of the

scale
;

?'. e., the top of the vernier coincides with 29.66 inches upon
the scale. In practice, therefore, we observe what division of the

vernier coincides with a division of the scale
;
this will show the

hundredths of an inch to be added to the tenths next below the

vernier at the top.

73. Vernier applied to graduated circles. The limb of a sextant

is usually divided into parts of 10' each
;
and if a vernier be taken

stand
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equal in length to 59 of these parts, and be subdivided into 60 equal

portions, each division of the vernier will be equal to %% of 10',

while each division of the limb is equal to 10'. Hence an interval

on the limb exceeds an interval on the vernier by 7V of 10'; that

is, by 10". Hence, although the limb is graduated into parts equal

to 10', the vernier enables us to measure angles as small as 10".

A circle of two or three feet radius may be graduated into

spaces equal to 2' each, and by means of a vernier we may measure

angles as small as 2" or even I". When angles as small as V
are to be measured, it is difficult to tell which division of the

vernier coincides with a division of the limb, and the vernier is

less convenient than the reading microscope.

74. The reading Microscope. The large circles employed in as-

tronomical observations are divided into spaces as small as 5', and

sometimes as small as 2'. By a vernier these spaces are some-

times subdivided so as to give single seconds. The vernier is

generally employed in instruments made by German artists, but

upon large circles made by English artists the subdivisions are

usually effected by the reading microscope. Fig. 20 represents

the appearance ofone of A Fig.2o.

these microscopes. It is

a compound microscope,

consisting of three lenses,

one of which is the ob-

ject lens at L, and the

other two are formed into

a positive eye-piece, GH.
In the common focus of the object lens and the eye-piece at K, is

placed the spider-line micrometer. It consists of a small rectan-

gular frame, across which are stretched two spider-lines forming
an acute cross, and is moved laterally by means of a screw, M.

The figure on the right shows the field of view, with the magni-
fied divisions on the instrument, as seen through the microscope.
When the microscope is properly adjusted, the image of the di-

vided limb and the spider-lines are distinctly visible together;
and also five revolutions of the screw must exactly measure one

of the 5' spaces on the limb. One revolution of the head of the

screw will therefore carry the spider-lines over a space of 1'. The
circumference of the circle attached to the head, M, is divided into
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60 equal parts, so that the motion of the head through one of these

divisions, advances the spider-lines through
a space of I". There

are six of these microscopes, A, B, C, D, E, F, placed at equal dis-

tances round the circle, and firmly attached to the pier.

75. To determine the horizontal point. In order to ascertain the

horizontal point upon the limb of the circle, we direct the telescope

upon any star which is about crossing the meridian, and bring its

image to coincide with the horizontal wire which passes through

the centre of the field of the telescope. The graduation is then

read off by the fixed microscopes. On the next night, we place a

vessel containing mercury in a convenient position near the floor,

so that, by directing the telescope of the mural circle toward it,

the same star may be seen reflected from the surface of the mer-

cury, and we bring the reflected image to coincide with the hori-

zontal wire of the telescope. The graduation is then read off as

before. Now, by a law of optics, the reflected image will appear

as much below the horizon as the star is really above the horizon
;

therefore half the sum of the two readings at either of the micro-

scopes, will be the reading at the same microscope when the tel-

escope is horizontal.

76. To determine the altitude of any object. Having determined

the reading of each of the microscopes when the telescope is di-

rected to the horizon, if we wish to determine the altitude of any

object, we direct the telescope to it, so that it may be seen on the

horizontal wire as the star passes the meridian, and then read off

the microscopes. The difference between the last reading, and the

reading when the telescope is horizontal, is the altitude required.

The zenith distance of an object is found by subtracting its alti-

tude from 90.

The pole star crosses the meridian, above and below the pole,
at intervals of 12 hours sidereal time; apd the true position of the

pole is exactly midway between the two points where the star

crossi-s the meridian; therefore half the sum of the readings of

either microscope when the pole star makes its transit' above and
below the pole, will be the reading for the pole itself.

The readings for the pole being determined, those which cor-

respond to the point where the celestial equator crosses the merid-

ian, are easily found, since the equator is 90 from the pole.
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Having determined the position of the celestial equator, the dec-

lination of any star is easily determined, since its declination is

simply its distance from the equator.

77. The Transit Circle, Since the mural circle has a short axis,

its position in the meridian is unstable, and therefore it can not

be relied upon to give the right ascension of stars with great ac-

curacy. It was formerly thought necessary at Greenwich to have

two instruments for determining a star's place ; viz., a transit in-

strument to determine its right ascension, and a mural circle to

determine its declination. The German astronomers have, how-

ever, combined both instruments in one, under the name of me-

ridian circle, which is essentially the transit instrument already

described, with a large graduated circle attached to its axis; and

a large transit circle is rig. 21.

now in use at the Green-

wich Observatory.

Altitude and Azimuth In-

strument.

78. The altitude and

azimuth instrument con-

sists of one graduated
circle confined to a hori-

zontal plane; a second

graduated circle perpen-
dicular to the former,

and capable of being
turned into any azimuth

;

and a telescope firmly

fastened to the second

circle, and turning with

it in altitude. The ap-

pearance of this instru-

ment will be learned

from the annexed figure.

EE are two legs of the

tripod upon which the

instrument rests; and in

close contact with the
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tripod is placed the azimuth circle, FF. Above the azimuth cir-

cle, and concentric with it,
is placed a strong circular plate, which

sustains the whole of the upper part of the instrument, and also a

pointer, to show the degree and nearest five minutes to be read

off on the azimuth circle
;
the remaining minutes and seconds be-

ing obtained by means of the two reading microscopes C and D.

The pillars, HIT, support the transit axis I by means of the pro-

jecting pieces LL. The telescope, MM, is connected with the hor-

izontal axis in a manner similar to that of the transit instrument.

Upon the axis, as a centre, is fixed the double circle NN, each

circle being placed close against the telescope. The circles are

fastened together by small brass pillars, and the graduation is

made on a narrow ring of silver, inlaid on one of the sides, which

is usually termed thence of the instrument. The reading micro-

scopes, AB, for the vertical circle, are carried by two arms, PP,
attached near the top of one of the pillars.

In the principal focus of the telescope, are stretched spider lines,

as in the transit instrument, and the illumination is effected in a

similar manner.

79. Adjustments of the instrument. Before commencing obser-

vations with this instrument, the horizontal circle must be leveled,

and also the axis of the telescope. The meridional point on the

azimuth circle is its reading when the telescope is pointed north

or south, and may be determined by observing a star at equal alti-

tudes east and west of the meridian, and finding the point mid-

way between the two observed azimuths
;
or the instrument may

be adjusted to the meridian in the same manner as a transit. The
horizontal point of the altitude circle is its reading when the axis

of the telescope is horizontal, and may be found, as with the mu-
ral circle, by alternate observations of a star directly and reflected

from the surface of mercury.
This instrument lias the advantage over the transit instrument

and mural circle, in its being able to determine the place of a star

in any part of the visible heavens; but we ordinarily require the

place of a star to be given in right ascension and declination in-

stead of altitude and azimuth, and to deduce the one from the

other requires a laborious computation. Hence the altitude and
azimuth instrument is but little used in astronomical observations,

except for special purposes, as, for example, to investigate the laws
of refraction.
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The Sextant.

80. The arc of a sextant, as its name implies, contains sixty de-

grees, but, on account of the double reflection, is divided into 120

degrees. The annexed figure represents a sextant, the frame being

generally made of brass; Fig. 22.

the handle, H, at its back, is

made of wood. When ob-

serving, the instrument is

to be held with one hand

by the handle, while the

other hand moves the in-

dex G. The arc, AB, is di-

vided into 120 or more de-

grees, numbered from A to-

ward B, and each degree is

divided into six equal parts

of 10' each, while the ver-

nier shows 10". The divisions are also continued a short dis-

tance on the other side of zero toward A, forming what is called

the arc of excess. The microscope, M, is movable about a centre,

and may be adjusted to read off the divisions on the graduated
limb. A tangent screw, D, is fixed to the index, for the purpose
of making the contacts more accurately than can be done by hand.

When the index is to be moved a considerable distance, the screw

I must be loosened
;
and when the index is brought nearly to the

required division, the screw I must be tightened, and the index

be moved gradually by the tangent screw. The upper end of the

index Gr terminates in a circle, across which is fixed the silvered

index glass C, over the centre of motion, and perpendicular to the

plane of the instrument. To the frame at N is attached a second

glass, called the horizon glass, the lower half of which only is sil-

vered. This must also be perpendicular to the plane of the in-

strument, and in such a position that its plane shall be parallel to

the plane of the index glass C, when the vernier is set to zero on

the limb AB.
The telescope, T, is carried by a ring, K ;

and in the focus of the

object glass are placed two wires parallel to each other, and equi-

distant from the axis of the telescope. Four dark glasses, of dif-

ferent depths of shade and color, are placed at F, between the in;

D

-V
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dex and horizon glasses ;
also three more at E, any one or more

of which can be turned down, to moderate the intensity of the

light before reaching the eye, when a bright object, as the sun, is

observed.

SI. To measure the altitude of the sun by reflection from mercury.

Set the index near zero. Hold the instrument with the right

hand in the vertical plane of the sun, with the telescope pointed

toward the sun. Two images will be seen in the field of view,

one of which, viz., that formed by reflection, will apparently move

downward when the index is pushed forward. Follow the re-

flected image as it travels downward, until it appears to be as far

below the horizon as it was at first above, and the image of the

sun reflected from the mercury also appears in the field of view.

Fasten the index, and, by means of the tangent screw, bring the

upper or lower limb of the sun's image reflected from the index

glass, into contact with the opposite limb of the image reflected

from the artificial horizon. The angle shown on the instrument,

when corrected for the index error, will be double the altitude of

the sun's limb above the horizontal plane ;
to the half of which,

if the semi-diameter, refraction and parallax be applied, the result

will be the true altitude of the centre.

If the observer is at sea, the natural horizon must be employed.
Direct the sight to that part of the horizon beneath the sun, and
move the index till you bring the image of its lower limb to touch

the horizon directly underneath it.

82. To measure the distance between two objects. To find the dis-

tance between the moon and sun, hold the sextant so that its plane

may pass through both objects. Look directly at the moon
through the telescope, and move the index forward till the sun's

image is brought nearly into contact with the moon's nearest limb.

Fix the index by the screw under the sextant, and make the con-

tact perfect by means of the tangent screw. The index will then
show the distance of the nearest limbs of the sun and moon. In
a similar manner may we measure the distance between the moon
and a star.

83. Dip of the horizon. In observing an altitude at sea with
the sextant, the image of an object is made to coincide with the
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visible horizon
;
but since the eye is elevated above the surface

of the sea, the visible horizon will be below the true horizontal

plane.

Let AC be the radius of the earth, AD
the height of the eye above the level of the

sea, ED El a horizontal plane passing through
the place of the observer

;
then IIDB will be

the dip or depression of the horizon, which

may be found as follows :

The angle HDB is' equal to the angle BCD;
and in the right-angled triangle BCD, BD2=
CD2-BC2=(AC+ AD)2-AC2

. Whence BD
becomes known. Then, in the same triangle,

CD : rad. :: BD : sin. BCD(=HDB),
the depression of the horizon.

The depression thus obtained is the true depression ;
but this

must be lessened by the amount of terrestrial refraction, which is

very uncertain. About |th or -^th of the whole quantity is usu-

ally allowed.

For an elevation of 25 feet the dip of the horizon amounts to

nearly five minutes, and for an elevation of 100 feet it amounts

to nearly ten minutes. For an elevation of 8000 feet the dip
amounts to about one degree, and for an elevation of 12,000 feet

it amounts to about two degrees.

In 1862 Mr. Glaisher ascended in a balloon to the height of

36,670 feet, from which elevation the dip of the horizon was

nearly four degrees.

CHAPTER III.

ATMOSPHERIC REFRACTION. TWILIGHT.

84. THE air which surrounds the earth decreases gradually in

density as we ascend from the surface. At the height of 4 miles,

the density is only about half as great as at the earth's surface
;

at the height of 8 miles about one fourth as great ;
at the height

of 12 miles about one eighth as great, and so on. From this law
it follows that at the height of 50 miles, its density must be ex-

tremely small, so as to be nearly or quite insensible.
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85. Law ofatmospheric refraction. According to a law of optics,

when a ray of light passes obliquely from a rarer to a denser me-

dium, it is bent toward the perpendicular to the refracting sur-

face. Let SA be a ray of light coming
from any distant object, S, and falling

on the surface of a series of layers of

air, increasing in density downward.

The ray SA, passing into the first lay-

er, will be deflected in the direction

AB, toward a perpendicular to the sur-

face, MN. Passing into the next lay-

er, it will be again deflected in the di-

rection BC, more toward the perpen-

dicular
;
and passing through the lowest layer, it will be still more

deflected, and will enter the eye at D, in the direction ofCD; and,

since every object appears in the direction from which the visual

ray enters the eye, the object S will be seen in the direction DS',

instead of its true direction AS.

Since the density of the earth's atmosphere increases gradually

from its upper surface to the earth, when a ray of light from any
of the heavenly bodies enters the atmosphere obliquely, its path
is not a broken line, as we have here supposed, but a curve, con-

cave toward the earth. The density of the upper parts of the at-

mosphere being very small, the curve at first deviates very little

from a straight line, but the deviation increases as it approaches
the earth. Both the straight and curved parts of the ray lie in

the same vertical plane ;
that is, the refraction of the atmosphere

makes an object appear to be nearer the zenith than it really is,

but does not affect its azimuth.

86. How the refraction may be computed. It is a difficult prob-
lem to compute the exact amount of the refraction of the atmos-

phere ;
but for altitudes exceeding 10 degrees, the entire refrac-

tion may be assumed to take place at a single surface, as MN, and

may be computed approximately in the following manner:
Let 2 denote the apparent zenith distance of a star, and r the

effect of refraction
; then, if there were no refraction, the zenith,

distance would be z+r. But we have found in Optics, Art. 691,
that the sine of incidence=mx sine of refraction, where m repre-
sents the index of refraction. Ilence
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sin. (z+r)=m sin. 2.

But by Trigonometry, Art. 72,

sin. (z+r)=sin.z cos. r-f cos. z sin. r.

For zenith distances less than 80, r is less than 6', and therefore

its sine may be considered equal to the arc, and its cosine equal
to unity. Hence we find

sin. z+r cos. z=m sin. z.

Dividing by cos. z, and putting '= tangent (Trigonometry, Art.

28), we obtain tang. zr=m tang, z,

or r= (m 1) tang. z.

r is here expressed in parts of radius. If we wish to have its

value expressed in seconds, we must multiply it by 206265, which

is the number of seconds in an arc equal to radius. If r" repre-
sents the refraction expressed in seconds, then

r"=206265 r.

At the temperature of 50, and pressure 29.96 inches, the re-

fractive index of air is 1.0002836. Hence we have

r"= 0.0002836 X 206265 x tang. z.

or r"=58".49,tang.z;
that is, the refraction is equal to 58 /r

.49 x tangent of the zenith

distance. For altitudes greater than 40 the error of this formula

does not exceed one second, and for an altitude of 12 the error

does not exceed ten seconds. The following formula is much
more accurate, viz., r"=57".54 tang, (z 3r").

For altitudes greater than 12 the error of this formula never

exceeds a half second, and for altitudes as small as 6 the error

never amounts to ten seconds
;
but to furnish the refraction with

accuracy entirely down to the horizon requires a much more

complicated formula.

From a comparison of an immense number of observations, it

has been found that the average value of the refraction at the

horizon is about thirty-five minutes, or a little more than half a

degree ;
at an altitude of 10 it is only five minutes

;
at 25 it is

two minutes; at 45 it is one minute; at 62 it is only thirty

seconds
;
and in the zenith it is zero. See Table VII., page 328.

87. How the refraction may be determined by observation. The
amount of refraction for different altitudes may be determined by
observation as follows : In latitudes greater than 45, a star which
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passes through the zenith of the place, may also be observed when

it passes the meridian below the pole. Let the polar distance of

such a star be measured both at the upper and lower culmina-

tions. In the former case there will be no refraction
;
the differ-

ence between the two observed polar distances will therefore be

the amount of refraction for the altitude at the lower culmination
;

because if there were no refraction, the apparent diurnal path of

the star would be a circle with the celestial pole for its centre.

This method is strictly applicable only in latitudes greater than

45, and by observations at one station we can only determine the

refraction corresponding to a single altitude. Since, however,

for zenith distances less than 45, the amount of refraction is quite

small, and is given with great accuracy by the Tables, we may
safely extend the application of this method. We may therefore

select any star within the circle of perpetual apparition, and ob-

serve its polar distance at the upper and lower culminations, and

correct the former for refraction. The difference between this

corrected value and the observed polar distance at the lower cul-

mination, will be the refraction corresponding to the latter altitude.

88. Second method of determining refraction. The following
method is more general in its application, and will enable us to

construct a complete table of refractions.

Observe the altitude of a star whose declination is known, and

note the time by the clock. Observe also when the star crosses

the meridian, and the difference of time between the observations

will give the hour angle of the star from the meridian.

Fig. 25. z Let PZEE be the meridian of the

place of observation, P the pole, Z
the zenith, and S the true place of

the star. Let ZS be a vertical cir-

cle passing through the star, and
1 PS an hour circle passing through

the star. Then, in the triangle ZPS,
PZ=the complement of the latitude,

PS=the north polar distance of the star,

and ZPS= the angular distance of the star from the meridian.

In this triangle we know, therefore, two sides and the included

angle, from which we can compute ZS, or the true zenith distance
of the star. The difference between the computed value of ZS
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and its observed value, will be the refraction corresponding to this

altitude.

If we commence our observations when the star is near the ho-

rizon, and continue them at short intervals until it reaches the

meridian, we may, by a proper selection of stars, determine the

amount of refraction for all altitudes from zero to 90.

89. Corrections for temperature and pressure. The amount of

refraction at a given altitude is not constant, but depends upon
the temperature, and weight of the air. Tables have been con-

structed, partly from observation and partly from theory, by which

we may at once obtain the mean refraction for any altitude
;
and

rules are given by which a correction may be made for the state

of the barometer and thermometer.

90. Effect of refraction upon the time of sunrise. Since refraction

increases the altitudes of the heavenly bodies, it must accelerate

their rising and retard their setting, and thus render them longer

visible. The amount of refraction at the horizon is about 35',

which being a little more than the apparent diameters of the sun

and moon, it follows that these bodies, at the moment of rising

and setting, are visible above the horizon, when in reality they
are wholly below it.

91. Effect of refraction upon the figure of the sun's disc. When
the sun is near the horizon, the lower limb, being nearest the ho-

rizon, is most affected by refraction, and therefore more elevated

than the upper limb, the effect of which is to bring the two limbs

apparently closer together by the difference between the two re-

fractions. The apparent diminution of the vertical diameter some-

times amounts at the horizon to one fifth of the whole diameter.

The disc thus assumes the form of an ellipse, of which the major
axis is horizontal.

92. Enlargement of the sun near the horizon. The apparent en-

largement of the sun and moon near the horizon is an optical illu-

sion. If we measure the apparent diameters of these bodies with

any suitable instrument, we shall find that they subtend a less

angle near the horizon, than they do when near the zenith. It is,

then, wholly owing to an error of judgment that they seem to ua

larger near the horizon.
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Our judgment of the absolute magnitude of a body is based

upon our judgment of its distance. If two objects at unequal dis-

tances subtend the same angle, the more distant one must be the

larger. Now the sun and moon, when near the horizon, appear to

us more distant than when they are high in the heavens. They
seem more distant in the former position, partly from the number

of intervening objects, and partly from diminished brightness.

When the moon is near the horizon, a variety of intervening ob.

jects shows us that the distance of the moon must be considera-

ble
;
but when the moon is on the meridian no such objects inter-

vene, and the moon appears quite near. For the same reason, the

vault of heaven does not present the appearance of a hemisphere,

but appears flattened at the zenith, and spread out at the horizon.

Our estimate of the distance of objects is also affected by their

brightness. Thus, a distant mountain, seen through a perfectly

clear atmosphere, appears much nearer than when seen through
a hazy atmosphere.

93. Cause of twilight. The sun continues to illumine the clouds

and the upper strata of the air, after it has set, in the same man-

. ner as it shines on the summits of mountains after it has set to

the inhabitants of the adjacent plains. The air and clouds thus

illumined reflect light to the earth below them, and produce twi-

light. As the sun continues to descend below the horizon, a less

part of the visible atmosphere receives his direct light ;
less light

is transmitted by reflection to the surface of the earth
; until, at

length, all reflection ceases, and night begins. This takes place
when the sun is about 18 below the horizon.

Before sunrise in the morning, the same phenomena are exhib-

ited in the reverse order. If there were no atmosphere, none of

the sun's rays could reach us after his actual setting, or before his

rising.

Let ABCD repre-

sent a portion of the

earth, A a point on

its surface where the

sun, S, is in the act of

setting, and let SAH
be a ray of light just

grazing the earth at
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A, and leaving the atmosphere at the point II. The point A is

illuminated by the whole reflective atmosphere HGFE. The

point B, to which the sun has set, receives no direct solar light,

nor any reflected from that part of the atmosphere which is be-

low ALH, but it receives a twilight from the portion ELF, which

lies above the visible horizon BF. The point C receives a twi-

light only from the small portion of the atmosphere HMGr, while

at D the twilight has ceased altogether.

94. Duration of twilight at the equator. The duration of twilight

varies with the season of the year, and with our position upon the

earth's surface. At the equator, where the circles of daily rotation,

are perpendicular to the horizon, when the sun is in the celestial

equator, it descends through 18 in an hour and twelve minutes

(-}4i=li hours) ;
that is, twilight lasts Ih. and 12m. When the sun

is not in the equator, the duration of twilight is somewhat increased.

95. Duration of twilight at the poles. At the north pole there is

night as long as the sun is south of the equator; but whenever it

is not more than 18 south, the sun is never more than 18 below

the horizon. About the close of September, the sun sinks below

the horizon, and there is continual twilight until November 12th,

when it attains a distance of 18 from the equator. From this

date there is no twilight until January 29th, from which time there

is continual twilight until about the middle of March, when the

sun rises above the horizon, and continues above the horizon un-

interruptedly for six months.

96. Duration of twilight in middle latitudes. At intermediate

points of the earth, the duration of twilight may vary from Ih.

12m. to several weeks. In latitude 40, during the months of

March and September, twilight lasts about an hour and a half,

while in midsummer it lasts a little over two hours.

In latitude 50, where the north pole is elevated 50 above the

horizon, the point which is on the meridian 18 below the north

point of the horizon, is 68 distant from the north pole, and there-

fore 22 distant from the equator. Now, during the entire month

of June, the distance of the sun from the equator exceeds 22
;

that is, in latitude 50 there is continual twilight from sunset to

sunrise, during a period of more than a month.
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At places nearer to the pole, the period of the year during which

twilight lasts through the entire night, is still longer.

97. Consequences if there tvere no atmosphere. If there were no

atmosphere, the darkness of midnight would instantly succeed the

setting of the sun, and it would continue thus until the instant of

the sun's rising. During the day the illumination would also be

much less than it is at present, for the sun's light could only pene-

trate apartments which were directly accessible to his rays, or into

which it was reflected from the surface of natural objects. On
the summits of mountains, where the atmosphere is very rare, the

sky assumes the color of the deepest blue, approaching to black-

ness, and stars become visible in the daytime.

CHAPTER IV.

THE EARTH'S ANNUAL MOTION. SIDEREAL AND SOLAR TIME.

THE EQUATION OF TIME. THE CALENDAR. THE CELESTIAL

GLOBE.

98. Sun's apparent motion in right ascension. If we observe the

exact position of the sun with reference to the stars, from day to

day through the year, we shall find that it has an apparent mo-
tion among them along a great circle of the celestial sphere, whose

plane makes an angle of 23 27' with the plane of the celestial

equator. This motion may be determined by observations with
the transit instrument and mural circle.

If the sun's transit be observed daily, and its right ascension be

determined, it will be found that the right ascension increases each

day about four minutes of time, or one degree, so that in a year
the sun makes a complete circuit round the heavens, moving con-

stantly among the stars from west to east. This daily motion in

right ascension is not uniform, but varies from 215s. to 266s., the
mean being about 236s., or 3m. 56s.

99. Sun's apparent motion in declination. If the point at which
the sun's centre crosses the meridian be observed daily with the
mural

circle, it will be found to change from day to day. Its

declination is zero on the 20th of March, from which time its north
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declination increases until it becomes 23 27' on the 21st of June.

It then decreases until the 22d of September, when the sun's cen-

tre is again upon the equator. Its south declination then increases

until it becomes 23 27' on the 21st of December, after which it

decreases until the sun's centre returns to the equator on the 20th

of March.

If we trace upon a celestial globe the course of the sun from

day to day, we shall find its path to be a great circle of the heav-

ens, inclined to the equator at an angle of 23 27'. This circle is

called the ecliptic, because solar and lunar eclipses can only take

place when the moon is very near this plane.

100. The equinoxes and solstices. The ecliptic intersects the ce-

lestial equator at two points diametrically opposite to each other.

These are called the equinoctial points because, when the sun is

at these points, it is for an equal time above and below the hori-

zon, and the days and nights are therefore equal.

The point at which the sun passes from the south to the north

side of the celestial equator, is called the vernal equinoctial point,

and the other is called the autumnal equinoctial point. The times

at which the sun's centre is found at these points are called the

vernal and autumnal equinoxes. The vernal equinox, therefore,

takes place on the 20th of March, and the autumnal on the 22d

of September.
Those points of the ecliptic which are midway between the

equinoctial points are the most distant from the celestial equator,
and are called the solstitial points; and the times at which the

sun's centre passes those points are called the solstices. The sum-

mer solstice takes place on the 21st of June, and the winter sol-

stice on the 21st of December.

101. The equinoctial colure is the hour circle which passes

through the equinoctial points. The solstitial colure is the hour

circle which passes through the solstitial points. The solstitial

colure is at right angles both to the ecliptic and to the equator,

for it cuts both these circles 90 degrees from their common inter-

section
;
that is, from the equinoctial points.

The distance of either solstitial point from the celestial equator
is 23 27'. The more distant the sun is from the celestial equa-

tor, the more unequal will be the days and nights ; and, therefore,
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the longest day of the year will be the day of the summer sol-

stice, and the shortest that of the winter solstice. In southern lat-

itudes the seasons will be reversed.

102. The zodiac is a zone of the heavens extending eight de-

grees each side of the ecliptic. The sun, the moon, and all the

principal planets, have their motions within the limits of the zo-

diac.

The zodiac is divided into twelve equal parts, called signs, each

of which contains 30 degrees. Beginning with the vernal equi-

nox, they are as follows :

Sign.
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apparent annual motion of the sun may be explained either by

supposing a real revolution of the sun around the earth, or a rev-

olution of the earth around the sun. But it follows from the prin-

ciples of Mechanics that the earth and sun must both revolve

around their common centre of gravity, and this point is very
near the centre of the sun.

If the earth could be observed by a spectator upon the sun, it

would appear among the fixed stars in the point of the sky oppo-
site to that in which the sun appears as viewed from the earth.

Thus, in Fig. 27, let S represent

the sun, and ABPD the earth's

orbit : a spectator upon the earth

will see the sun projected among
the fixed stars in the point of the

sky opposite to that occupied by
the earth

; and, as the earth moves

from A to B and P, the sun will

appear to move among the stars ^ "

from P to D and A, and in the

course of the year will appear to

trace out in the sky the plane of the ecliptic. When the earth is

in Libra we see the sun in the opposite sign Aries; and as the

earth moves from Libra to Scorpio, the sun appears to move from

Aries to Taurus, and so on through the ecliptic.

105. Phenomena tuithin the arctic circle. At the summer sol-

stice, on the arctic circle, the sun's distance from the north pole is

just equal to the latitude of the place, and the sun's diurnal path

just touches the horizon at the north point. Within the arctic

circle, there will be several days during which the sun never sinks

below the horizon. So, also, near the winter solstice, within the

arctic circle, there will be several days during which the sun does

not rise above the horizon.

106. Division of the earth into zones. The earth is naturally di-

vided into five zones, depending on the appearance of the diurnal

path of the sun.

These zones are,

1st. The two frigid zones, included within the polar circles.

Within these zones there are several days of the year during
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which the sun does not rise above the horizon, and other days

during which the sun does not sink below the horizon.

2d. The torrid zone, extending from the Tropic of Cancer to

the Tropic of Capricorn. Throughout this zone, the sun every

year passes through the zenith of the observer, when the sun's

declination is equal to the latitude of the place.

3d. The north and south temperate zones, extending from the

tropics to the polar circles. Within these zones the sun is never

seen in the zenith, and it rises and sets every day.

107. Cause of the change of seasons. "While the earth revolves

annually round the sun, it has a motion of rotation upon an axis

which is inclined 23 27' from a perpendicular to the ecliptic;

and tiiis axis continually points in the same direction. Hence result

the alternations of day and night, and the succession of seasons.

In June, when the north pole of the earth inclines toward the

sun, the greater portion of the northern hemisphere is enlightened,
and the greater portion of the southern hemisphere is dark. The

days are, therefore, longer than the nights in the northern heini-

Fig. 28.
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sphere. The reverse is true in the southern hemisphere ;
but on

the equator, the days and nights are equal. In December, when
the south pole inclines toward the sun, the days are longer than

the nights in the southern hemisphere.
In March and September, when the earth's axis is perpendicu-

lar to the direction of the sun, the circle which separates the en-

lightened from the unenlightened hemisphere, passes through the

poles, and the days and nights are equal all over the globe.

These different cases are illustrated by Fig. 28. Let S represent
the position of the sun, and ABCD different positions of the earth

in its orbit, the axis ns always pointing toward the same fixed

star. At A and C the sun illumines from n to s, and as the globe
turns upon its axis, the sun will appear to describe the equator,

and the days and nights will be equal in all parts of the globe.

When the earth is at B, the sun illumines 23-^ beyond the north

pole n, and falls the same distance short of the south pole s. When
the earth is at D, the sun illumines 23-2- beyond the south pole s,

and falls the same distance short of the north pole n.

-108. Under what circumstances would there have been no change

of seasons ? If the earth's axis had been perpendicular to the

plane of its orbit, the equator would have coincided with the eclip-

tic
; day and night would have been of equal duration throughout

the year, and there would have been no diversity of seasons.

109. In what case would the change of seasons have been greater

than it now -is ? If the inclination of the equator to the ecliptic

had been greater than it is, the sun would have receded farther

from the equator on the north side in summer, and on the south

side in winter
;
and the heat of summer, as well as the cold of

winter, would have been more intense
;
that is, the diversity of

the seasons would have been greater than it is at present If the

equator had been at right angles to the ecliptic, the poles of the

equator would have been situated in the ecliptic ;
and at the sum-

mer solstice the sun would have appeared at the north pole of the

celestial sphere, and at the winter solstice it would have been at

the south pole of the celestial sphere. To an observer in the mid-

dle latitudes, the sun would therefore, for a considerable part of

summer, be within the circle of perpetual apparition, and for sev-

eral weeks be constantly above the horizon. So, also, for a con-
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siderable part of winter, he would be within the circle of perpet-

ual occultation, and for several weeks be constantly below the ho-

rizon. The great vicissitudes of heat and cold resulting from such

a movement of the sun, would be extremely unfavorable to both

animal and vegetable life.

110. To determine the obliquity of the ecliptic. The inclination of

the equator to the ecliptic, or the obliquity of the ecliptic, is equal

to the sun's greatest declination. It may therefore be ascertained

by measuring, by means of the mural circle, the sun's declination

at the summer, or at the winter solstice. The greatest declina-

tion of the sun is found to be 23 27' 25", both north and south

of the equator. This arc is, however, diminishing at the rate of

about half a second annually.

111. Form of the earths orbit. The path of the earth around the

sun is nearly, but not exactly, a circle. The relative distances of

the sun from the earth may be found by observing the changes
in the sun's apparent diameter. The apparent diameter of the

sun, at different distances from the spectator, varies inversely as

F5g. 29. the distance. Thus, in Fig. 29,

E:sin.E::ES:AS.

E v AS . 1
v sin. L -jT-r, or varies as

^-r-r.
JliO ilife

Since the sines of small angles

are nearly proportional to the angles, E varies as
^-r, very nearly.
J-JO

By measuring, therefore, the sun's apparent diameter from day
to day throughout the year, we have the means of determining
the relative distances of the sun from the earth.

Ex. 1. On the 1st of January, 1864, the sun's apparent diameter
was 32' 36".4, and on the 1st of July, 1864, his diameter was
31' 31".8. Find the relative distances of the sun at these two

Periods. A ns. 0.96698.
Ex. 2. On the 1st of April, 1864, the apparent diameter of the

sun was 32' 3".4. Find the ratio of its distance to the distances
in July and January. Ans. 0.98357 and 1.01716.

112. The earths orlitis an ellipse. By observations of the sun's

apparent diameter continued throughout the year, we find that
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the true form of the earth's orbit is an ellipse, having the sun in

one of the foci. The sun's apparent diameter is least on the 1st

of July, and greatest on the 1st of January. We may then con-

struct a figure showing the form of the orbit, by setting off lines,

SA, SB, SO, etc., corresponding to Fig.so.

the sun's distances, and making an-

gles with each other equal to the

sun's angular motion between the

times of observation. The figure

thus formed is found to be an ellipse,
G '

with the sun occupying one of the

foci, as S.

113. To find the eccentricity of the

earth's orbit. The point A of the orbit where the earth is nearest

the sun, is called the perihelion, and this happens on the 1st of

January. The point Gr most distant from the sun is called its

aphelion, and this happens on the 1st of July ;
that is, the earth

is more distant from the sun in summer than in winter.

The distance from the centre of the ellipse to the focus, divided

by the semi-major axis, is called the eccentricity of the ellipse, and

its value may be determined as follows :

If a denote the semi-major axis, and e the eccentricity of the

earth's orbit, then

the earth's aphelion distance =a(l + e);

the earth's perihelion distance= a(le).
If we represent the aphelion distance by A, and the perihelion

distance by P, we have

A = l + e

Solving this equation, we obtain

A-P_ ~A
"A+p-^~P"

But |=|^|=o.96698.A o2 ob A
Hence e= 0.01678,

which is about -j^-th.

This eccentricity is subject to a diminution of 0.000042 in one

E
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hundred years. If this change were to continue indefinitely, the

earth's orbit must eventually become circular
;
but Le Verrier has

proved that the diminution is not to continue beyond 24,000 years,

when the eccentricity will be equal to .0033, and after that time

the eccentricity will increase.

114. Law of Hie earth's motion in its orbit. The radius vector of

the earth's orbit describes equal areas in equal times. Let A and

FIg 3t B be the positions of the earth in its

orbit on two successive days ;
let rep-

resent the angle ASB, and R represent

AS. Draw AC perpendicular to SB.

Then AC = AS sin. ASB = R sin.
;

and the area ASB=R2
sin. 0. But

since the earth's diurnal motion in the

ecliptic is small, we may assume that

the arc is equal to its sine, and hence

the area=R2
0.

If this area described by the radius vector in one day, is a con>

stant quantity, then R2 will evidently be a constant quantity.
But R varies inversely as the apparent diameter of the sun.

n

Hence, putting D for the sun's apparent diameter, = must be a

constant quantity ;
or

0:0'::D2 :D'2
;

that is, the sun's diurnal motion in different parts of its orbit, must

vary as the square of its apparent diameter.

Now we find this supposition verified by observation. Thus :

From noon of January 1st to noon of January 2d, 1864, the

sun moved through 1 1' 9".9 of the ecliptic ;
and his apparent

diameter at the same time was 32' 36".4.

From noon ofJuly 1st to noon of July 2d, 1864, the sun moved
through 57' 12 ".9

;
and his apparent diameter at the same time

was 31' 31".8.

Reducing these values to seconds, we have
3669.9 : 3432.9 :: 1956.42

: 1891.82
.

"We find the same law to hold true in other parts of the orbit,
and hence it is considered as established by observation, that the

radius vector of the earth's orbit describes equal areas in equal times.



SIDEREAL AND SOLAE TIME. 67

115. Why the greatest heat and cold do not occur at the solstices.

The influence of the sun in heating a portion of the earth's sur-

face depends upon its altitude above the* horizon, and upon the

length of time during which it continues above the horizon. The

greater the altitude, the less obliquely will the rays strike the sur-

face of the earth at noon, and the greater will be their heating

power. Both these causes conspire to produce the increased heat

of summer, and the diminished heat of winter. It might be in-

ferred that the hottest day ought to occur on the 21st of June,
when the sun rises highest, and the days are the longest. Such,

however, is not the case, for the following reason : As midsum-

mer approaches, the quantity of heat imparted by the sun during
the day is greater than the quantity lost during the night, and

hence each day there is an increase of heat. On the 21st of June

this daily augmentation reaches its maximum
;
but there is still

each day an accession of heat, until the heat lost during the night is

just equal to that imparted during the day, which happens, at most

places in the northern hemisphere, some time in July or August.
For the same reason, the greatest cold does not occur on the

21st of December, but some time in January or February.

Sidereal and /Solar Time.

116. Sidereal Time. The interval between two successive re-

turns of the vernal equinox to the same meridian, is called a side-

real day. This interval represents the time of the rotation of the

earth upon its axis, and is not only invariable from one month to

another, but has not changed so much as the hundredth part of a

second, in two thousand years.

117. Solar Time. The interval between two successive returns

of the sun to the same meridian, is called a solar day.
The sun passes through 860 degrees of longitude in one year,

or 365 days 5 hours 48 minutes and 47.8 seconds; so that the

sun's mean daily motion in longitude is found by the proportion
one year : one day : : 360 : daily motion =59' 8".33.

This motion is not uniform, but is greatest when the sun is near-

est the earth. Hence the solar days are unequal ;
and to avoid

the inconvenience which would result from this fact, astronomers

have recourse to a mean solar day, the length of which is equal to

the mean or average of all the apparent solar days in a year.
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118. Sidereal and solar time compared -The length of the mean

solar day is greater than that of the sidereal, because when the

mean sun, in its diurnal motion, returns to a given meridian, it is

59' 8".3 eastward of its position on the preceding day.

An arc of the equator, equal to 360 59' 8".3, passes the merid-

ian in a mean solar day, while only 360 pass in a sidereal day.

To find the excess of the solar day above the sidereal day, ex-

pressed in sidereal time, we have the proportion

360 : 59' 8".3 : : one day : 3m. 56.5s.

Hence 24 hours of mean solar time are equivalent to 24h. 3m.

56.5s. of sidereal time.

To find the excess of the solar day above the sidereal day, ex-

pressed in solar time, we have the proportion

360 59' 8".3 : 59' 8".3 : : one day : 3m. 55.9s.

Hence 24 hours of sidereal time are equivalent to 23h. 56m. 4.1s.

of mean solar time.

119. Civil day, and astronomical day. The civil day begins at

midnight, and consists of two periods of 12 hours each
;
but mod-

ern astronomers commence their day at noon, because this is a

date which is marked by a phenomenon which can be accurately

observed, viz., the passage of the sun over the meridian
;
and be-

cause observations being chiefly made at night, it is inconvenient

to have a change of date at midnight. Tfie astronomical day
commences 12 hours later than the civil day, and the hours are

numbered continuously up to 24. Thus July 4th, 9 A.M. civil

time, corresponds to July 3d, 21 hours of astronomical time.

120. Apparent time, and mean time. The interval between two

successive returns of the sun to the same meridian, is an apparent
solar day ;

and apparent time is time reckoned in apparent solar

days, while mean time is time reckoned in mean solar days.
The difference between apparent solar time and mean solar

time, is called the equation of time.

If a clock were required to keep apparent solar time, it would
be necessary that its rate should change from day to day accord"

ing to a complicated law. It has been found in practice impossi-
ble to accomplish this, and hence clocks are now regulated to in-

dicate mean solar time. A clock, therefore, should not indicate

12h. when the sun is on the meridian, but should sometimes indi-
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cate more than 12h. and sometimes less than 12h., the difference

being equal to the equation of time.

121. Cause of the inequality of the solar days. The inequality of

the solar days depends on two causes, the unequal motion of the

earth in its orbit, and the inclination of the equator to the ecliptic.

While the earth is revolving round the sun in an elliptical or-

bit, its motion is greatest when it is Fig. 32.

nearest the sun, and slowest when it

is most distant. Let ADGK repre-

sent the elliptic orbit of the earth,

with the sun in one of its foci at S,

and let the direction of motion be

from A toward E.

We have found that the sun's

mean daily motion as seen from the

earth, or the earth's mean daily mo-

tion as seen from the sun, is 59' 8".3. But when the earth is

nearest the sun its daily motion is 61' 10". In passing from A
toward E its daily motion diminishes, and at G it is only 57' 12".

While moving, therefore, from A through E to G, the earth will

be in advance of its mean place, while at G, having completed a

half revolution, the true and the mean places will coincide. For

a like reason, in going from G to A, the earth will be behind its

mean place ;
but at A the mean and true places will again coin-

cide. This point A in the diagram, corresponds to about the 1st

of January.
Now the apparent direction of the sun from the earth, is exact-

ly opposite to that of the earth from the sun. Hence, when the

earth is nearest to the sun, the apparent solar day will be longer
than the mean solar day. If, then, we conceive a fictitious sun to

move uniformly through the heavens, describing 59' 8" per day,
and that the true and fictitious suns are together on the 1st of

January, it is evident that on the 2d of January the fictitious sun

will come to the meridian a few seconds before the true sun
;
on

the 3d of January the fictitious sun will be still more in advance

of the true sun, and this difference will go on increasing for about

three months, when it amounts to a little more than 8 minutes.

From this time the difference will diminish until about the 1st of

July, when the positions of the true and fictitious suns will coin-
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cide. But on the 2d of July the fictitious sun will come to the

meridian a few seconds later than the true sun
;
on the 3d of July

it will have fallen still more behind the true sun, and this differ-

ence will go on increasing for about three months, when it amounts

to a little more than 8 minutes. From this time the difference

will diminish until the 1st of January, when the positions of the

true and fictitious suns will again coincide.

So far, then, as it depends upon the unequal motion of the

earth in its orbit, the equation of time is positive for six months,

and then negative for six months, and its greatest value is 8m. 2-is.

122. Second cause for the inequality of the solar days. Even if

the earth's motion in its orbit were perfectly uniform, the appar-

ent solar days would be unequal, because the ecliptic is inclined to

Fig. 38.
the equator. Let

represent the equator,

and AGN the northern

halfofthe ecliptic. Let

the ecliptic be divided

into equal portions, AB,
BC, CD, etc., supposed
to be described by the

sun in equal portions of

time
;
and through the points B, C, D, etc., let hour circles be made

to pass, cutting the equator in the points Z>, c, d, etc. The arc AGN
is equal to the arc A^/N, for all great circles bisect each other

;

also AG is equal to Ag, since the former is one half ofAGN, and

the latter of A#N. Now, since AB6 is a right-angled triangle,

AB is greater than Al ; for the same reason, AC is greater than

Ac; AD is greater than AcZ, and so on. But AG is equal to Ag ;

therefore Ag is divided into unequal portions at the points 6, c, d,

etc. Now B and b come to the meridian at the same instant
;
so

also C and c, D and d, and so on.

Suppose now that a fictitious sun moves in the equator at the

rate of 59' 8" per day, while the real sun moves in the ecliptic at

the same rate, and let them start together from A at noon on the

20th of March. On the 21st of March, at noon, the real sun will

have advanced toward B 59' 8", which distance projected on the

equator will be less than 59' 8", while the fictitious sun will have
advanced toward I 59' 8"; that is, the fictitious sun will be east-
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ward of the real sun, and the real sun will come to the meridian

sooner than the fictitious one. The same will happen during the

motion of the sun through the entire quadrant AG. The two

suns will reach the points G and g on the 21st of June, and then

they will both come to the meridian at the same instant.

During the motion of the sun through the second quadrant, the

real sun will come to the meridian later than the fictitious one, but

both will reach the point N on the 22d of September at the same
instant. During the motion through the third quadrant, the real

sun will come to the meridian sooner than the fictitious one, until

the 21st of December, when they will be found 180 from the

points G and g. During the motion through the last quadrant,
the real sun will come to the meridian later than the fictitious

one, but both will reach the point A at the same instant on the

21st of March. Thus we see that, so far as it depends upon the

obliquity of the ecliptic, the equation of time is positive for three

months
;
then negative for three months

;
then positive for three

months
;
and then negative for another three months.

The amount of the equation of time due to this cause, may be

computed as follows : Suppose the sun to have advanced 45 from

A
; then, in the right-angled triangle ADc?, the angle at A is 23

27', and the hypothenuse is 45. Ac? is then computed from the

equation, tang. Ac?=cos. A tang. AD,
whence Ad is found to be 42 31' 47".

The difference between AD and Ad is 2 28' 13", or 9m. 52.8s.

in time
;
and this is about the greatest amount of the equation of

time, due to the obliquity of the ecliptic.

123. Resulting values of the equation of time. The influence of

each of these causes upon the equation of time, is artificially rep-

resented in the following figure, where AE is supposed to repre-

sent a year divided into twelve equal parts to represent the

months
;
and the ordinates of the curve ABODE, measured from

the line AE as an axis, represent the values of the equation of

time, so far as it depends upon the unequal motion of the earth

in its orbit; and the ordinates of the curve FGHI represent the

values of the equation of time, so far as it depends upon the in-

clination of the equator to the ecliptic. The actual equation of

time will be found by taking the algebraic sum of the effects due

to these two separate causes. The result is the curve MNOPQB^
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Fig. 34.

Jan,.



THE CALENDAR. 73

the year to be 365J days. A Julian year, therefore, exceeds the

tropical year by llm. 12s. This difference amounts to a little

more than 3 days in the course of 400 years.

125. The Gregorian Calendar. At the time of the Council of

Nice, in the year 325, the Julian calendar was introduced into the

Church, and at that time the vernal equinox fell on the 21st of

March
;
but in the year 1582 the error of the Julian calendar had

accumulated to nearly 10 days, and the vernal equinox fell on the

llth of March. If this erroneous reckoning had continued, in the

course of time spring would have commenced in September, and

summer in December. It was therefore resolved to reform the

calendar, which was done by Pope Gregory XIII., and the first

step was to correct the loss of the ten days, by counting the day
after the 4th of October, 1582, not the 5th, but the 15th of the

month. In order to keep the vernal equinox to the 21st of March
in future, it was concluded that three intercalary days should be

omitted every four hundred years. It was also agreed that the

omission of the intercalary days should take place in those years
which were not divisible by 400. Thus the years 1700, 1800, and

1900, which, according to the Julian calendar, would be bissextile,

would, according to the reformed calendar, be common years.

The calendar thus reformed is called the Gregorian Calendar.

The error of this calendar amounts to less than one day in 3000

years.

126. Adoption of the Gregorian Calendar. The Gregorian calen-

dar was immediately adopted at Eome, and soon afterward in all

Catholic countries. In Protestant countries the reform was not

so readily adopted, and in England and her colonies it was not

introduced till the year 1752. At this time there was a difference

of 11 days between the Julian and Gregorian calendars, in conse-

quence of the suppression in the latter, of the intercalary day in

1700. It was therefore enacted by Parliament that 11 days should

be left out of the month of September in the year 1752, by calling

the day following the 2d of the month, the 14th instead of the 3d.

The Gregorian calendar is now used in all Christian countries

except Russia. The Julian and Gregorian calendars are frequent-

ly designated by the terms old style and new style. In consequence
of the intercalary days omitted in the years 1700 and 1800, there

is now 12 davs difference between the two calendars.
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127. When does the year begin? In the different countries of

Europe, the year has not always been regarded as commencing at

the same date. In certain countries, the year has been regarded

as commencing at Christmas, on the 25th of December
;
in others,

on the 1st of January ;
in others, on the 1st of March

;
in others,

on the 25th of March
;
and in others at Easter, which may corre-

spond to any date between March 22d and April 25th. In En-

gland, previous to the year 1752, the legal year commenced on

the 25th of March
;
but the same act that introduced the Grego-

rian calendar established the 1st ofJanuary as the commencement

of the year. In this manner the year 1751 lost its month of Jan-

uary, its month of February, and the first 24 days of March. This

change in the calendar explains the double date which is frequent-

ly found in English books. For example, Feb. 15, Trli> means

the 15th of February, 1751, according to the old mode of counting
the years from the 25th of March, and 1752 according to the new
method prescribed by Parliament. In order to distinguish the

one mode of reckoning from the other, it was for a long time cus-

tomary to attach to each date the letters O. S. for old style, or

N. S. for new style. Thus the date of General Washington's birth

was either written Feb. 11, 1731, O. S., or Feb. 22, 1732, K S.

128. First and last days of the year. Since a common year con-

sists of 365 days, or 52 weeks and 1 day, the last day of each com-
mon year must fall on the same day of the week as the first

;
that

is, if the year begins on Sunday it will end on Sunday. But if

leap-year begins on Sunday it will end on Monday, and the fol-

lowing year will begin on Tuesday.

PROBLEMS ON THE CELESTIAL GLOBE.

129. To find the right ascension and declination ofa star.

Bring the star to the brass meridian
;
the degree of the merid-

ian over the star will be its declination, and the degree of the

equinoctial under the meridian will be its right ascension. Eight
ascension is sometimes expressed in hours and minutes of time,
and sometimes in degrees and minutes of arc.

Ex. Required the right ascension and declination of Arcturus.

130. The right ascension and declination of a star being given, to

find the star upon the globe.
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Bring the degree of the equator which marks the right ascen-

sion to the brass meridian; then under the given declination

marked on the meridian will be the star required.

Ex. Eequired the star whose right ascension is lOh. 1m. 7s., and

declination 12 37' K

131. To set the celestial globe in a position similar to that of the

heavens, at a given place, at a given day and hour.

Set the brass meridian to coincide with the meridian of the

place ;
elevate the pole to the latitude of the place ; bring the

sun's place in the ecliptic to the meridian, and set the hour index

at 12
;
then turn the globe westward until the index points to

the given hour. The constellations would then have the same

appearance to an eye situated at the centre of the globe, as they
have at that moment in the heavens.

Ex. Required the appearance of the heavens at New Haven,
Lat. 41 18', June 20th, at 10 o'clock P.M.

132. To determine the time of rising, setting, and culmination of a

star for any given day and place.

Elevate the pole to the latitude of the place ; bring the sun's

place in the ecliptic for the given day to the meridian, and set the

hour index to 12. Turn the globe until the star comes to the

eastern horizon, and the hour shown by the index will be the

time of the star's rising. Bring the star to the brass meridian,

and the index will show the time of the star's culmination. Turn

the globe until the star comes to the western horizon, and the in-

dex will show the time of the star's setting.

Ex. Required the time when Aldebaran rises, culminates, and

sets at Cincinnati, October 10th.

133. To determine the position oftheplaneis in the heavens at any

given time and place.

Find the right ascension and declination of the planets for the

given day from the Nautical Almanac, and mark their places

upon the globe; then adjust the globe as in Art. 131, and the po-

sition of the planets upon the globe will correspond to their posi-

tion in the heavens. We may then determine the time of their

rising and setting as in Art. 132. The time of rising and setting
of a comet mav be determined in the same manner.
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CHAPTER V.

PARALLAX. ASTRONOMICAL PROBLEMS.

134. Diurnal parallax defined. The direction in which a celes-

tial body would be seen if viewed from the centre of the earth, is

called its true place ; and the direction in which it is seen from

any point on the surface, is called its apparent place. The arc of

the heavens intercepted between the true and apparent places

that is, the apparent displacement which would be produced by

the transfer of the observer from the centre to the surface, is called

the diurnal'parallax.
Let C denote the centre of the

earth
;
P the place of the observer

on its surface; M an object seen in

the zenith at P
;
M' the same ob-

ject seen at the zenith distance

MPM'; and M" the same object

seen in the horizon.

It is evident that M will appear

in the same direction whether it be

viewed from P or C. Hence, in the

zenith, there is no diurnal parallax,

and there the apparent place of an object is its true place.

If the object be at M', its apparent direction is PM', while its

true direction is CM', and the parallax corresponding to the zenith

distance MPM' will be PM'C.
As the object is more remote from the zenith, the parallax in-

creases; apd when the object is in the horizon, as at M", the di-

urnal parallax becomes greatest, and is called the horizontal paral-

lax. It is the angle PM"C which the radius of the earth subtends

at the object
It is evident that parallax increases the zenith distance, and con-

sequently diminishes the altitude. Hence, to obtain the true ze-

nith distance from the apparent, the parallax must be subtracted;

and to obtain the true altitude from the apparent, the parallax
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must be added. The azimuth of a heavenly body is not affected

by parallax.

. 135. To deduce the parallax at any altitude from the horizontal

parallax. In the triangle CPM' we have

CM' : CP : : sin. CPM /

(=sin. MPM') : sin. GMT. (1)

Also, in the triangle CPM", we have

CM":CP::.l:sin.CM"P. (2)

Hence 1 : sin. CM'T : : sin. MPM'
(

: sin. GMT,
or sin. CMT=sin. CM"P x sin. MPM'

;

that is, the sine of the parallax at any altitude, is equal to the product

of the sine of tfie horizontalparallax, by the sine of the apparent zenith

distance.

The parallax of the sun and planets is so small that we may,
without sensible error, employ the parallax itself instead of its

sine
;
that is, the parallax at any altitude is equal to the product of

the horizontal parallax, by the sine of the apparent zenith distance.

136. Relation of the parallax of a heavenly body to its distance.

Let us put z= the zenith distance MPM'
;

p=ihe parallax CM'P;
r=CP, the radius of the earth

;

E^CM', the distance of the heavenly body.

Then, by equation (1),

R : r :: sin. z : sin.^

or
sin.>=j5- sin.z,

r .

or P=-v
sin * z

>
veiT nearty'

The parallax at any given altitude varies, therefore, inversely

as the distance, very nearly.

When the zenith distance becomes 90, sin. z becomes unity

and if we denote the horizontal parallax by P, we shall have

sin.P=,

or P=4 very nearly.
i

137. To determine the parallax of the moon by observation. Let

A, A' be two places on the earth situated under the same merid-
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^ z rig. ST. ian> and at a great distance from

each other; let C be the centre of

the earth, and M the moon.

Let AC be denoted by r, and CM
by E, and let ZAM, Z'A'M, which

are the moon's zenith distances as

measured at the two observatories,

be denoted by 2, and z'. Then the

moon's parallax, AMC, at the station A, will be

r .

E
and the parallax A'MC at the station A' will be

Adding these equations together, we find

'= (sin. 2+ sin.

But the angle p+p', or AMA', is equal to the difference be-

tween ZCZ' and the sum of the angles z and z' ; and since, if the

places be situated one north and the other south of the equator,
we have ZCZ' equal to the sum of the latitudes of the stations

Z+Z', we obtain p+p'=z+z'll'.
Substituting this value in the preceding equation, we find

z+z' I Z'= T> (sin. z+ sin.
z'},

- 1- 1
'

,.E sm.z+sm.z

But =7 is the horizontal parallax of the moon, which was re-

quired to be found.

138. Stations of observation. It is not essential that the two ob-

servers should be exactly on the same meridian
;
for if the me-

ridian zenith distances of the moon be observed on several consec-

utive days, its change of meridian zenith distance in a given time
will be known. Then, if the difference of longitude of the two
places is known, the zenith distance of the moon as observed at

one of the meridians, may be reduced to what it would have been
found to be, if the observations had been made in the same lati-

tude at the other meridian.
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139. Results obtained ly this method. There is an observatory
at the Cape of Good Hope, in Lat. 33 56' S., where the moon's

meridian altitude has been observed daily for many years, when-

ever the weather would permit ;
and similar observations are reg-

ularly made at Greenwich Observatory, in Lat. 51 28' N"., as also

at numerous other observatories in Europe. By combining these

observations, the moon's parallax has been ascertained with great

precision. It is found that the parallax varies considerably from

one day to another. The equatorial parallax, when greatest, is

about 61' 32", and when least, 53' 48". Its average value is

57' 2".

By the preceding method the sun's parallax may be ascertained

to be about 9". It can, however, be found more accurately by ob-

servations of the transits of Venus, as will be explained hereafter.

The parallax of the planets can also be determined in the same

manner as that of the moon
;
but in the case of the nearest planet

the parallax never exceeds 32", and that of the remoter planets

never amounts to 1"
;
and there are other methods by which these

quantities can be more accurately determined.

140. To compute the distance of a heavenly body. When we know
the earth's radius and the horizontal parallax of a heavenly body,
we can compute its distance. For (Fig. 36)

sin. PM"C : PC : : radius : CM",
or the distance of the object equals the radius of the earth, divided

by the sine of the horizontal parallax.

141. Effect of the ellipticity of the earth upon parallax. The hor-

izontal parallax of the moon is the angle which the earth's radius

would subtend to an observer at the moon. On account of the

spheroidal figure of the earth, this horizontal parallax is not the

same for all places on the earth, but varies with the earth's radius,

being greatest at the equator, and diminishing as we proceed to-

ward either pole. It is necessary, therefore, always to compute
the earth's radius for the place of the observer, and this may be

done from the known properties of an ellipse. The moon's hori-

zontal parallax for any given latitude is equal to the horizontal

parallax at the equator multiplied by the radius of the earth at

the given latitude, the radius ofHhe equator being considered as

unity.
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It is this corrected value of the equatorial parallax which

should be employed in all computations which involve the par-

allax of a particular place.

ASTRONOMICAL PROBLEMS.

142. To find the latitude of any place. The latitude of a place

may be determined by measuring the altitude of any circumpolar

star, both at its upper and lower culminations, as explained in

Art 76. It may also be determined by measuring a single me-

ridian altitude of any celestial body whose declination is known.

Fi, 33. Let S or S' be a star on the meridian
;

SE or S'E its declination. Measure SII,

the altitude of the star S, and correct it

for refraction. Then

H o But EH is the complement of PO,
which is the latitude sought. The declinations of all the brighter

stars have been determined with great accuracy, and are recorded

in catalogues of the stars.

143. To find the latitude at sea. At sea the latitude is usually

determined by observing with the sextant the greatest altitude

of the sun's lower limb above the sea horizon at noon. The ob-

servations are commenced about half an hour before noon, and

the altitude of the sun is repeatedly measured until the altitude

ceases to increase. This greatest altitude is considered to be the

altitude on the meridian. To this altitude we must add the sun's

semi-diameter in order to obtain the altitude of the sun's centre,

and this result must be corrected for refraction. To this result we
must add the sun's declination if south of the equator, or subtract

it if north, and we shall obtain the elevation of the equator,
which is the complement of the latitude. The Nautical Almanac
furnishes the sun's declination for every day of the year.

'144. To find the time at any place. The time of apparent noon
is the time of the sun's meridian passage, and is most convenient-

ly found by means of a transit instrument adjusted to the merid-

ian. Mean time may be derived from apparent time by applying
the equation of time with its proper sign.
The time of apparent noon may also be found by noting the
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times when the sun has equal altitudes before and after passing
the meridian, and bisecting the interval between them. When
great accuracy is required, the result obtained by this method re-

quires a slight correction, since the sun's declination changes be-

tween morning and evening.

145. To find the time by a single altitude of the sun. The time

may also be computed from an altitude of the sun measured at

any hour of the day, provided we know the sun's declination and

the latitude of the place.

Let PZH be the meridian of the place
Fig. 30.

of observation, P the pole, Z the zenith,

and S the place of the sun. Measure the

zenith distance, ZS, and correct it for re-

fraction. Then, in the spherical triangle

ZPS, we know the three sides, viz., PZ,
H

the complement of the latitude, PS, the distance of the sun from

the north pole, and ZS, the sun's zenith distance. In this triangle
we can compute (Trigonometry, Art. 223) the angle ZPS, which,
if expressed in time, will be the interval between the moment of

observation and noon. This observation can be made at sea with

a sextant, and this is the method of determining time which is

commonly practiced by navigators.

146. A meridian mark, and sun-dial If, upon a horizontal

plane, we trace a meridian line, and at the south extremity of

this line erect a vertical rod freely exposed to the sun, we may
determine the time of apparent noon by the passage of the shadow
of the rod over the meridian line. Or, if we set up a straight rod

in a position parallel to the axis of the earth, its shadow, as cast

upon a horizontal plane, will have the same direction at any given

hour, at all seasons of the year. If, then, we graduate this hori-

zontal plane in a suitable manner, and mark the lines with the

hours of the day, we may determine the apparent time whenever
the sun shines upon the rod. Such an instrument is called a sun-

dial, and it may be constructed with sufficient precision to answer

the ordinary purposes of society. This instrument will always
indicate apparent time

;
but mean time may be deduced from it

by applying the equation of time.

F
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Fig. 40.

147. To compute the longitude, right ascension, and declination of

the sun, any one of these quantities, together with the obliquity of the

ecliptic, being given.
Let EPQP' represent the equinoc-

tial colure, EMQ the equator, ESQ
the ecliptic, E the first point ofAries,

S the place of the sun, PSP' an hour

circle passing through the sun
;
then

\<l EM is the sun's right ascension, SM
his declination, ES his longitude, and

MES the obliquity of the ecliptic.

Then, in the triangle ESM, we have,

by Napier's rule,

E cos. E= tang. ME cot. SE
;

that is, representing the obliquity by to, and the right ascension

by E. A. tang. E. A. = tang. Long. cos. to, (1)

tanjy.R.A. /ox
and tang.Long.- ^- . (2)

Also, E sin. ME= tang. MS cot. E
;

that is,
sin. R. A. = tang. Dec. cot. w, (3)

and tang. Dec.= sin. E. A. tang. to. (4)

Also, Esin.MS=sin.Esin.ES;
that is,

sin. Dec.= sin. & sin. Long., (5)

sin. Dec. ,

and sin. Long. = -
: . (6)

sin . ( i

Also, E cos. ES= cos. ME cos. MS;
that is, cos. Long.= cos. E. A. cos. Dec., (7)

cos. Long.
and cos.E.A.= -5$. (8)

cos. Dec.

Ex. 1. On the 1st of June, 1864, at Greenwich mean noon, the

sun's right ascension was 4h. 38m. 27.75s., and his declination
'

55".2 N.
; required his longitude. Ans. 71 10' 35".9.

. 2. On the 1st of January, 1864, the sun's longitude was

280 23' 52".3, and his declination 23 2' 52".2 S.
; required his

light ascension. Ans. 18h. 45m. 14.70s.

Ex. 3. On the 20th of May, 1864, the sun's longitude was

59
C
40' 1".6, and the obliquity of the ecliptic 23 27' 18".5

,
re-

quired his right ascension and declination.

4ns.R.A.3h.49m. 52.62s.

Dec. 20 5' 33".9 N.
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Ex. 4. On the 27th of October, 1864, the sun's right ascension

was 14h. 8m. 19.06s., and the obliquity of the ecliptic 23 27' 17".8;

required his longitude and declination.

-4*vu $hA.*S^<& &wxX-vdJ Ans.Long. 214 20' 34". 7.

: X -*< Dec- 12 58
'

34".4 S '

Ex. 5. On the 8th of Augustfl864, the sun's declination was

16 0' 56".4 N., and the obliquity of the ecliptic 23 27' 18".2
;

re-

quired his right ascension and longitude.

^*. E. A. 9h. 14m. 19.20s.

Long. 136 7' 6".5.

- 148. Given the latitude of a place and the surfs declination, to find
the time of his rising or setting.

Let PEP' represent the hour circle, rig 41.

which is six hours from the meridian,

and which intersects the horizon in the

east point, E. Let S or S' be the posi-

tion of the sun in the horizon, and

through S draw the hour circle PSP'
;

also through S' draw the hour circle

PS'P'. Then, in the right-angled spher-

ical triangle EMS, or EM'S',
EM or EM'= the distance of the sun from the six o'clock

hour circle.

MS or M'S'=the sun's declination, which we will represent

by&
MES=M'ES/ the complement of the latitude.

Now, by Napier's rule,

E sin. EM= tang. MS cot. MES.

Representing the latitude by 0,

sin. EM= tang. S tang. 0.
The time from the sun's rising to his passing the meridian =6

hours EM.
Ex. 1, Required the time of sunrise at New York,-Lat. 40 42',

on the 10th of May, when the sun's declination is 17 49' N.

Ans. 4h. 56m.
Ex. 2. Required the time of sunset at Cincinnati, Lat. 39 6', on

the 5th of November, when the sun's declination is 15 56' S.

Ans. oh. 6m. apparent time.
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149. To find the time when the surfs upper limb rises, allowance

being made for refraction. The preceding method gives the time

when the sun's centre would rise if there were no refraction. The

effect of refraction is to cause the sun to be seen above the sensi-

ble horizon sooner in the morning, and later in the afternoon, than

he actually is
;
and moreover, when the sun's upper limb coincides

with the horizon, the centre is about 16' below. At the instant,

therefore, ofsunrise or sunset, his centre is 90 50' from the zenith
;

the semi-diameter being about 16', and the horizontal refraction

34'. In order, therefore, to compute the apparent time of rising

of the sun's upper limb, we must compute when the sun's centre is

90 50' from the zenith. This may be done as follows :

Fig. 42. z Let PZH be the meridian of the place of

observation, P the pole, Z the zenith, and

S the place of the sun. In the spherical

triangle ZPS, the three sides are known,

H o viz.,

PZ^the co-latitude=^;
ZS=the zenith distance=2;
PS=the north polar distance of the sun=c?.

In this triangle we can compute ZPS, which is the angular dis-

tance of the sun from the meridian.

By Trigonometry,

. (S 1)}
sin. (S c)

sin. b sin. c

Put

then sin. ?=.,
sin. -^

sin.

Ex. 1. Required the time of sunset at New York, Lat. 40 42',

on the 10th of May, when the sun's declination is 17 49' N.
Here ^= 49 18' . sin. (S-^)=9.922S92

d= 72 11 sin. (S-(/)=9.747281
z= 90 50 cosec. $= 0.120254

S=106 9 cosec. d= 0021345
S $= 56 51 2)9.811772"
S-<2= 33 58^ P= 53 37' sin. =9^905886

P=10715'=7h.9m.
Hence the sun sets at 7h. 9m. apparent time

; or, subtracting 4ra
for equation of time, we have 7h. 5m. moan time.
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Ex. 2. Required the mean time of sunrise at Boston, Lat 42 21',

on the loth of October, when the sun's declination i&-8 47' S.,

mean time being 14 minutes slow of apparent time.

Ans. 6h. 14m.

150. To find the time of beginning or end of twilight. At the be-

ginning or end of twilight, the sun is 18 below the horizon
;
that

is, his zenith distance is 108. Hence this problem can be solved

by the formula of the last article.

Ex. 1. Eequired the time of the commencement of twilight at

Washington, Lat. 38 53', on the 1st of June, when the sun's dec-

lination is 22 10' N, mean time being 2 minutes slow of appa-
rent time. Ans. 2h. 41m. mean time.

Ex. 2. Required the time of ending of twilight at New Orleans,

Lat. 29 57', on 'the 19th of February, when the sun's declination

is 11 19' S., mean time being 14 minutes fast of apparent time.

Ans. 7h. 12m. mean time.

151. To compute the distance between two stars whose rigid ascen-

sions and declinations are knoiun.

Let P be the pole, and S and S' two stars whose Fig - 4a

places are known. Then PS and PS' will repre-

sent their polar distances, and SPS' will be the

difference of their right ascensions. Draw SM
perpendicular to PS' produced. Then

R cos. P=tang. PM cot. PS.

Therefore, tang. PM= cos. P tang. PS.

Also, S'M=PM-PS'.
And cos. PM : cos. S'M : : cos. PS : cos. S'S.

Ex. 1. Required the distance from Aldebaran, R. A. 4h. 27m.

25.9s., polar distance 73 47' 33", to Sirius, R. A. 6h. 38m. 37.6s.,

polar distance 106 31' 2".

P= 2h. llm. 11.7s. = 32 47' 55" cos.= 9.924579

PS=106 31 2 tang. =0527916

PM=109 25 55 tang. =0.452495

PS'= 73 47 33

S'M= 35 38 "22 cos. =9.909930

PS=106 31 2 cos. = 9.453782

PM= 109 25 55 sec. = 0.477964

SS'= 46 44 cos. = 9.841676
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Ex. 2. Required the distance from Regulus, R. A. lOb. Om. 29.1s.,

polar distance 77 18' 41", to Antares, R. A. 16h. 20m. 20.3s., polar
1100 K/ KZ." A <nc QQ r.V J..V

distance 116 5' 55 Ans. 99

Fig. 44.

152. Distance between two stars on the same parallel of declination.

If two stars have the same declination, their distance can be

computed as follows :

Let P be the pole, EQ a portion of the equa-

tor, and SS' a portion of any parallel of dec-

lination, and PCE, PCQ two meridians passing

through S and S'.

Then, by Geometry,
arc EQ : arc SS' : : CQ : AS : : 1 : cos. Dec.

Therefore SS'=EQ cos. Dec. =EPQ cos. Dec.

That is, the distance between the two stars is equal to their dif-

ference of right ascension, multiplied by the cosine of their dec-

lination. This distance is, however, not measured on an arc of a

great circle, but on a parallel of declination.

Fig. 45.

153. To find the longitude and latitude of a star, when its right as-

cension and declination are known.

Let P represent the pole of the

equator, E the pole of the ecliptic,

C the first point of Aries, PSP' an

hour circle passing through the

star S, and ESE' a circle of lati-

tude passing through the same star.

Then AEBE' represents the solsti-

tial colure, EP represents the ob-

liquity of the ecliptic, PS the polar
distance of the star, ES its co-lati-

tude; SPB is the complement of

its right ascension, and SEB is the complement of its longitude.
Draw SM perpendicular to PB. Represent PM by a ; also repre-
sent the longitude of the star S by L, its latitude by I,

and the ob-

liquity of the ecliptic by w.

Now, by Napier's rule, we have

R cos. SPM=tang. PM cot PS
;

that
is, sin. R. A. =tang. a tang. Dec.,

or
tang. a=sin. R. A. cot Dec. (A)
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Also, EM
Again, Trig., Art. 216, Cor. 3,

sin. EM : sin. PM : : tang. SPM : tang. SEM ;

that is,

sin. (a+ w) : sin. a : : cot R A. : cot. L : : tang. L : tang. R A.,

T tansr. R. A. xsin. (a+ w)
or tang. L= :-

:

---v
'. (1)sm. a

Also, R cos. SEM= tang. EM cot. ES
;

that is, tang. ?=cot (a+ w) sin. L. (2)

Ex. 1. On the 1st of January, 1864, the R. A. of Capella was 5h.

6m. 42.01s., and its Dec. 45 51' 20".lK
; required its latitude and

longitude, the obliquity of the ecliptic being 23 27' 19".45.

By equation (A),

RA. 76 40' 30".15 sin. = 9.988148

Dec. 45 51 20 .1 cot = 9.987028

a=43 21 48 .2 tang. =9.975176

(u= 23 27 19 .45

>= 66 49 7 .65

By equation (1),

sin. ( + &,)
= 9.963440

cosec. o= 0.163282

L=795S'3".5 tang. =0.752249

By equation (2),
cot. (a+ w)

= 9. 63 1659

sin. L=9.993308

7=22 51' 4S".3 tang. =9.624967

Ex. 2. On the 1st of January, 1864, the R A. of Regulus was

lOh. 1m. 9.34s., and its Dec. 12 37' 36".8 N.
; required its latitude

and longitude, the obliquity of the ecliptic being 23 27' 19". 45.

Ans. Latitude,

Longitude,
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CHAPTER VI.

THE SUN ITS PHYSICAL CONSTITUTION.

154 Distance of the sun. The distance of the sun from the

earth can be computed when we know its horizontal parallax, and

the radius of the earth.

The mean value of the horizontal parallax of the sun has

been found to be 8".58, and the equatorial radius of the earth is

3963 miles.

Hence sin. 8".58 : 3963 : : 1 : the sun's distance,

which is found to be 95,300,000 miles
; or, in round numbers, 95

millions of miles.

155. Velocity of the earth's motion in its orbit. Since the earth

makes the entire circuit around the sun in one year, its daily mo-

tion may be found by dividing the circumference of its orbit by
365, and thence we may find the motion for one hour, minute,
or second. The circumference of the earth's orbit is very nearly
that of a circle whose radius is the sun's mean distance. We
thus find the circumference of the orbit to be 598,800,000 miles;
that the earth moves 1,639,000 miles per day ; 68,300 miles per

hour; 1138 miles per minute; and nearly 19 miles per second.

By the diurnal rotation, a point on the earth's equator is car-

ried round at the rate of 1037 miles per hour, or 17 miles per
minute. The motion in the orbit is, therefore, 66 times as rapid
as the diurnal motion at the equator.

156. The diameter of the sun. The sun's absolute diameter can
be computed, when we know his distance and apparent diameter.

The apparent diameter, as well as the distance, is variable, but the
mean value of his apparent diameter is 32' 3".64. Hence we
have the proportion

rad. : ES (95 millions) : : sin. 16' 1".8 : sun's radius,
which is found to be 444,406 miles; or his diameter is 888,812
miles.

The diameter of the sun is therefore 112 times that of the earth;
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Fig. 4C. and, since spheres are as the cubes

of their diameters, the volume of

the sun is more than 1,400,000
times that of the earth.

The density of the sun is about

one quarter that of the earth
; and, therefore, his mass, which is

equal to the product of his volume by his density, is found to be

355,000 times that of the earth.

157. Figure of the sun's disc. Since the sun rotates upon an

axis, as shown Art. 169, his figure can not be that of a perfect

sphere. The oblateness of a heavenly body depends chiefly upon
the ratio of the centrifugal force to the force of gravity upon its

surface. Now, on account of its slow rotation, the centrifugal force

of a point upon the sun's equator, is only about one sixth what it

is upon the earth, while the force of gravity is nearly thirty times

as great ;
hence the oblateness of the sun should be only about

-j-l-yth part of that of the earth. But the oblateness of the earth is

about Trijo-th. Hence the oblateness of the sun should be only
about j-rinnj-j which corresponds to a difference of less than one

twentieth part of a second between the equatorial and polar diam-

eters. This quantity is too small to be detected by our observa-

tions
;
and although the sun's diameter has been measured many

thousand times, still, with the exception of the effect due to re-

fraction, explained in Art. 91, his disc is sensibly a perfect circle.

158. Force ofgravity on the sun. The attraction of a sphere be-

ing the same as if its whole mass were collected in its centre, will

be proportional to the mass directly, and the square of the dis-

tance inversely ;
hence the force of gravity on the surface of the

sun, will be to the force of gravity on the surface of the earth, as

SOT 000
'

to unity, which is 27.9 to 1
;
that is, a pound of terres-

trial matter at the sun's surface, would exert a pressure equal to

what 27.9 such pounds would do at the surface of the earth. A
body weighing 200 pounds on the earth, would produce a press-

ure of 5580 pounds on the sun.

At the surface of the earth, a body falls through 16-nj-th feet in

one second
;
but a body on the sun would fall through 16-pj x 27.9

=448.7 feet in one second.
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PHYSICAL CONSTITUTION OF THE SUN.

159. Solar spots. When we examine the sun with a good tel-

escope, we frequently perceive upon his surface, black spots of ir-

regular shape, sometimes extremely minute, and at other times of

vast extent They usually make their first appearance at the east-

ern limb of the sun
;
advance gradually toward the centre

; pass

beyond it, and disappear at the western limb, after an interval of

about 14 days. They remain invisible about 14 days, and then

sometimes reappear at the eastern limb in nearly the same posi-

tion as at first, and again cross the sun's disc as before, having
taken 27d. 7h. in the entire revolution.

The appearance of a solar spot is that of an intensely black, ir-

regularly-shaped patch, called the nucleus, surrounded by a fringe

which is less dark, and is called the penumbra. The form of this

fringe is generally similar to that of the inclosed black spot ;
but

this is not always the case, for several dark spots are occasionally
included in a common penumbra.

Black spots have occasionally been seen without any penum-
bra

;
and sometimes we see a large penumbra without any central

nucleus
;
but generally both the nucleus and penumbra are com-

bined.

160. Changes of the spots. These spots change their form from

day to day, and sometimes from hour to hour. They usually
commence from a point of insensible magnitude, grow very rapid-

ly at first, and sometimes attain their full size in less than a day.
Then they remain stationary, with a well-defined penumbra, and
continue for ten, twenty, and some even for fifty days. Then the
nucleus usually becomes divided by a narrow line of light; this

line sends out numerous branches, which extend until the entire

nucleus is covered by the penumbra.

Decided changes have been detected in the appearance of a spot
within the interval of a single hour, indicating a motion upon
the sun's surface of at least 1000 miles per hour.
The duration of the spots is very variable. A spot has ap-

peared and vanished in less than 24 hours, while others have
lasted for weeks, and even months. In 1840, a spot was identi-
fied for nine revolutions, which corresponds to a period of about
eight months.
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'

161. Afagnitude and number of the spots. Soldi' spots are some-

times of immense magnitude, so that they have repeatedly been

visible to the naked eye. In June, 18-13, a solar spot remained for

a whole week visible to the naked eye. Its breadth measured

167", which indicates an absolute diameter of 77,000 miles.

The number of spots seen on the sun's disc is very variable.

Sometimes the disc is entirely free from them, and continues thus

for weeks, or even months together; at other times a large por-

tion of the sun's disc is covered with spots. Sometimes the spots

are small, but numerous
;
and sometimes they appear in groups

of vast extent. In a large group of spots which appeared in 1846,

upward of 200 single spots and points were counted. In 1837 a

cluster of spots covered an area of nearly 5 square minutes, or

nearly 4000 millions of square miles.

162. The black nucleus. It is not certain that the black nucleus

of a spot is entirely destitute of light ;
for the most intense arti-

ficial light, when seen projected on the sun's disc, appears as dark

as the spots themselves. Sir W. Herschel estimated that the light

of the penumbra was less than one half that of the brighter part
of the sun's surface, and the light of the nucleus less than one

hundredth of the brighter surface.

163. Upon what part of the sun do the spots appear? Spots are

generally confined to a zone extending about 30 on each side of

the sun's equator, and there are only three cases on record in

which spots have been seen as far as 45 from the sun's equator.

They are rarely seen directly upon the sun's equator or nearer to

it than 8 of latitude, and they are most frequent between the

parallels of 8 and 20. They are generally more numerous and

of a greater size in the sun's northern hemisphere than in the

southern hemisphere. When groups of spots are very numerous

they often manifest a tendency to arrange themselves in a line

nearly parallel to the sun's equator, and they sometimes extend

thus almost entirely across the visible disc. Some astronomers

have thought there was a particular meridian of the sun near

which spots are unusually frequent, and that spots are generated

again and again at distant intervals of time over the same iden-

tical points of the sun's surface
;
but this conjecture has not been

clearly established.
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164 . Appearance of the bright part of the sun's disc. Independ-

ently of tbo dark spots, the luminous part of the sun's disc is not

uniformly bright. It exhibits a mottled appearance, like that

which would be presented by a stratum of luminous clouds of ir-

regular shape and variable depth. This mottled appearance is

not confined, like the black spots, to a particular zone, but is seen

on all parts of the surface, even near the poles of rotation.

Sometimes we observe upon the sun's disc curved lines, or

streaks oflight, more luminous than the rest of the surface. These

are called faculoe, and they generally appear in the neighborhood
of the black spots.

165. Proof that the suris outer envelope is not solid. The rapid

changes which take place upon the surface of the sun, prove that

his outer envelope is not solid. Admitting that the great mass
of the sun is solid, that portion which we ordinarily see, must
be either liquid or gaseous ;

and the rapid motion of 1000 miles

per hour, which has been observed in solar spots, indicates that

the luminous matter which envelops the sun must be gaseous,
since liquid bodies could hardly be supposed to move with such

velocity.

166. The solar spots are not planetary bodies. It is evident that

the solar spots are at the surface of the sun; for if they were bodies

revolving around the sun at some distance from
it, the time dur-

ing which they would be seen on the sun's disc

would be less than that occupied in the remainder
of their revolution. Thus, let S represent the

sun, E the earth, and suppose ABC to represent
the path of an opaque body revolving about the
sun. Then AB represents that part of the orbit
in which the body would appear projected upon
the sun's disc, and this is less than half the entire

circumference
; whereas the spot reappears on the

opposite limb of the sun after an interval nearly
equal to that required to pass across the disc.

167. The dark spots are depressions in the lu-

minous matter which envelops the sun. This
was first proved by an observation made by Dr.
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Wilson, of Glasgow, in November, 1769. He first noticed a spot

November 22d, when it was not far from the sun's western limb
;

and he observed that the penumbra was about equally broad on

every side of the nucleus. The next day the eastern portion of

the penumbra had contracted in breadth, while the other parts re-

mained nearly of their former dimensions. On the 24th the pe-

Fig. 43.

numbra had entirely disappeared from the eastern side, while it

was still visible on the western side. On the llth of December

the spot reappeared on the sun's eastern limb, and now there was

no penumbra on the western side of the spot, although it was dis-

tinctly seen on the remaining sides. The next day the penum-
bra came into view on the western side, though narrower than on

the other sides. On the 17th the spot had passed the centre of

the sun's disc, and now the penumbra appeared of equal extent

on every side of the nucleus. From these observations, it is in-

ferred that the penumbra is lower than the general level of the

sun's bright surface, and the nucleus lower than the penumbra.
Dr. Wilson computed that the depth of the spot just described

was nearly 4000 miles.
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Similar observations were repeatedly made by Sir W. Herschel.

In 1794 he observed that, as a spot approached near the western

limb of the sun, the black nucleus gradually contracted in breadth,

while its length remained unchanged. It became reduced to a

narrow black line, and then disappeared, while the penumbra was

still visible. Similar observations have repeatedly been made by
other astronomers.

In 1801 Sir W. Herschel observed that when a spot came near

the western margin of the sun, he was able to distinguish the

thickness of the stratum on the western border, but not on the

eastern
;
and he hence computed that the depression of the pe-

numbra below the bright surface of the sun was not less than 1800

miles. Similar observations have been made by M. Secchi at

Rome.

168. The bright streaks orfaculce are elevated ridges rising above

the general level of the sun's surface. This is proved by an ob-

servation made in 1859 by Mr. Dawes, of England. He had the

good fortune to observe a bright streak of unusual size precisely

at the edge of the sun's disc, and he perceived that it projected

beyond the circular outline of the disc in the manner of a mount'

ain ridge.

In 1862, as an uncommonly large spot was passing off the sun's

disc, Mr. Hewlett perceived a small notch in the sun's margin,

precisely over the place where the great nucleus had previously
been seen, and on either side of it the photosphere appeared to be

heaped up above the general level of the sun's surface.

169. To determine the time of the sun's rotation. It is found that

a spt generally employs 27^ days in

passing from one limb of the sun around

to the same limb again, and it is inferred

that this apparent motion is caused by a

rotation of the sun upon his axis. But
the period above mentioned is not the

time in which the sun performs one ro-

tation about his axis
;
for

;
let AA'B rep-

resent the sun, and EET> the orbit of the

earth. When the earth is at E, the visi-

ble disc of the sun is AA'B; and if the earth was stationary at
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E, then the time required for a spot to move from the limb B
round to the same point again would be the time of the sun's

rotation. But while the spot has been performing its apparent

revolution, the earth has advanced in her orbit from E to E', and

now the visible disc of the sun is A'B', so that the spot has per-

formed more than a complete revolution in the time it has taken

to move from the western limb to the western limb again. Since

an apparent rotation of the sun takes place in 27^ days, the num-
365 a

ber of apparent rotations in a year will be ?
;
or 13.4.

*'*
But* in consequence of the motion of the earth about the sun,

if the sun had no real rotation, it would in one year make an ap-

parent rotation in a direction contrary to the motion of the earth.

Hence, in one year, there must be 14.4 real rotations of the sun,

and the time of one real rotation is
-7;HP or 25-3 days. Thus the

time of a real rotation is found to be nearly two days less than

that of an apparent rotation.

170. Temperature of different parts of the sun's disc. By receiv-

ing the image of different portions of the sun upon a very sensi-

tive thermometer, it has been discovered that the sun's disc has

not throughout exactly the same temperature. The rays pro-

ceeding from the centre of the disc are hotter than those which

proceed from the margin, and the black spots radiate less heat

than the neighboring bright surface.

The luminous intensity of different portions of the sun's disc

exhibits corresponding variations, the borders of the disc being
found less luminous than the centre. This difference is quite
noticeable in a photographic picture of the sun.

171. Influence of solar spots upon terrestrial temperattires. It has

been supposed that the presence of an unusual number of large

spots on the sun's disc must influence the temperature of the

earth, and there are some facts which favor this supposition. At

Paris, out of 26 years of observations, the mean temperature of

those years in which the spots were most numerous was half a

degree lower than that of those years in which the spots were

least frequent. But during the same years a slight effect of the

opposite kind was observed upon the temperature of places in the
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United States, so that we seem obliged to ascribe the differences

in question to other causes than the solar spots.

172. Position of Hie sun's equator. Besides the time of rotation,

observations of the solar spots enable us to ascertain the position

of the equator with reference to the ecliptic. The angle between

the solar equator and the ecliptic has been determined to be

about 7. About the first weeks of June and December, the

spots, in traversing the sun's disc, appear to us to describe straight

lines, but at other times the apparent paths of the spots are some*

what elliptical, and they present the greatest curvature about the

first weeks of March and September.

173. Periodicity in the number of the solar spots. The number
of the solar spots varies greatly in different years. Some years
the sun's disc is never seen entirely free from spots, while in other

years, for weeks and even months together, no spots of any kind

can be perceived. From a continued series of observations, em-

bracing a period of 38 years, it appears that the spots are subject
to a certain periodicity. The number of the spots increases dur-

ing 5 or 6 years, and then diminishes during about an equal pe-
riod of time, the interval between two consecutive maxima being
from 10 to 12 years.

As this period corresponds to the time of one revolution of

Jupiter, it suggests the idea that possibly Jupiter may have the

power of sensibly disturbing the sun's surface.

174. The sun not a solid body. A comparison of the dark lines

in the solar spectrum has led to the conclusion that the elements
of which the sun is composed are to a great extent the same as

those found upon the earth. The existence of iron, nickel, and
several other well-known metals in the sun's atmosphere is con-

sidered as proved ;
and since the density of the sun is only one

fourth that of the earth, while the force of gravity is 28 times its

force upon the earth, we can not suppose that any large part of
the sun's mass is in the condition of a solid or even a liquid body.
The most refractory substances, iron and nickel, exist upon the

sun^in
the state of elastic vapor. Hence the temperature of the

sun's surface is extremely elevated, far beyond the heat of terres-

trial volcanoes. It is possible that the centre of the sun consists
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of matter in the liquid or even the solid state
;
but it is probable

that the principal part of the sun's volume consists of matter in

the gaseous condition.

175. Nature of the sun's photosphere. The bright envelope of

the sun, which we call its photosphere, consists of matter in a state

analogous to that of aqueous vapor in terrestrial clouds
;
that is,

in the condition of a precipitate suspended in a transparent at-

mosphere. This photosphere is not only intensely luminous, but

intensely hot, and the thermoscope indicates that it radiates more

heat than the solar spots ;
but this does not prove that the photo-

sphere is really hotter than the nucleus of a solar spot, for gases

radiate heat more feebly than solids of the same temperature.

The matter of the photosphere probably consists of particles pre-

cipitated in consequence of their being cooled by radiation.

The sun's gaseous envelope extends far beyond the photo-

sphere. During total eclipses we observe protuberances rising

to a height of 80,000 miles above the surface of the sun, which

requires us to admit the existence of bodies analogous to clouds

floating at great elevations in an atmosphere ;
and if the extent

of the solar atmosphere compared with the height of the visi-

Fig.so. ble clouds corresponds with

what exists upon the earth,

we must conclude that the

solar atmosphere extends to

at least a million of miles

beyond his surface.

176. Nature of the penum-
bra. The penumbra of a

solar spot appears to be

formed of filaments of pho-

tospheric light converging
toward the centre of the

nucleus, each of the fila-

ments having the same light

as the photosphere, and the

sombre tint results from the

dark interstices between the

luminous streaks, as in a steel engraving shades are produced by
G
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dark lines separated by white interstices. The convergence of

the luminous streaks of the penumbra toward the centre of the

spot indicates the existence of currents flowing toward the cen-

tre. These converging currents probably meet an ascending cur-

rent of the heated atmosphere, by contact with which the matter

of the photosphere is dissolved, and becomes non-luminous.

The faculse are ascribed to commotions in the photosphere, by
which the thickness of the phosphorescent stratum is rendered

greater in some places than in others, and the surface appears

brightest at those points where the luminous envelope is thickest.

177. Motion of the solar spots. The spots are not stationary on

the sun's disc, for the apparent time of revolution of some of the

spots is much greater than that of others. In one instance, the

time of the sun's rotation, as deduced from observations of a solar

spot, was only 24d. 7h., while in another case it amounted to 26d.

6h. This difference can only be explained by admitting that the

spots have a motion of their own relative to the sun's surface,

just as our clouds have a motion relative to the earth's surface.

The motion of the solar spots in latitude is very small, and

this motion is sometimes directed toward the equator, but gener-

ally from the equator. The motion of the spots in longitude is

more decided. Spots near the equator have an apparent move-
ment of rotation more rapid than those at a distance from the

equator. While at the equator the daily angular velocity of ro-

tation is 865', in lat. 20 it is only 840', and in lat. 30 it is 816'.

Hence a point on the sun's equator makes a complete rotation in

25 days, but a point in lat. 30 makes one rotation in 26^- days.

178. Cause of the movements of the solar spots. The heat of the

sun must be continually dissipated by radiation. If this radiation

is more obstructed in some regions than in others, heat must ac-

cumulate in such places. Now the phenomena observed during
total eclipses indicate in the sun's atmosphere the existence of

large masses analogous to terrestrial clouds. Wherever these

clouds prevail, the free radiation of heat from the sun must be

obstructed, and heat must rapidly accumulate. The solar atmos-

phere tends to move toward these heated centres, and this must
be accompanied by an upward motion at the centre. The heated
air thus ascending partly dissolves and partly divides the matter



PHYSICAL CONSTITUTION OF THE SUN. 99

of the photosphere, causing it to heap up in a ring around the

opening, producing thus around the margin of the penumbra the

appearance of a border of light more intense than the general

photosphere.
A general movement of the atmosphere toward one point must

create a tendency to revolve around this centre, for the same rea-

son that terrestrial storms sometimes rotate about a vertical axis.

Such a motion of the solar spots has been repeatedly indicated

rig. 5t. by observation. Moreover, solar spots have

sometimes exhibited a spiral structure such

as might be supposed to result from rotation

about a vertical axis. Fig. 51 represents such

a spot observed by M. Secchi at Home in 1857.

The nucleus exhibited two centres perfectly

black, while the penumbra showed numerous

dark lines extending spirally from these cen-

tres, and a large spiral filament, in the form of an eagle's beak,

extended far within the nucleus.

179. Zodiacal light. The zodiacal light is a faint light, some-

what resembling that of the Milky Way, or more nearly that of

the tail of a comet, and is seen at certain seasons of the year in

the west after the close of twilight in the evening, or in the east

before its commencement in the morning. Its apparent form is

nearly that of a cone with its base toward the sun, and its axis

F,g 53
is situated nearly in the plane of the

ecliptic. The season most favorable

for observing this phenomenon, is

when its direction, or the direction

of the ecliptic, is most nearly perpen-
dicular to the horizon. For places

near the latitude of New York, this

occurs about the 1st of March for

the evening, and about the 10th of

October for the morning.
The distance to which the zodi-

acal light extends from the sun, va-

ries from 20 or 30 to 80 or 90,
and sometimes even more than 90.
Its breadth at its base perpendicu-

larly to its length, varies from 8 to
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30. It is brightest in the parts nearest the sun, and in its up-

per part its light fades away by insensible gradations, so that dif-

ferent observers at the same time and place assign to it different

limits. Under favorable circumstances, it has been seen to extend

entirely across the heavens.

It is probable that the zodiacal light is an envelope of very rare

matter surrounding the sun, and extending beyond the orbits of

Mercury and Venus, and at times even beyond the orbit of the

earth. If the sun could be viewed from one of the other stars, it

would probably appear to be surrounded by a nebulosity, similar

to that in which some of the fixed stars appear to be enveloped,

as seen from the earth.

CHAPTER VII.

PRECESSION OF THE EQUINOXES. NUTATION. ABERRATION.

LINE OF THE APSIDES.

179. Fixed position of the ecliptic. By comparing catalogues of

stars formed in different centuries, we find that the latitudes of the

stars continue always nearly the same. Hence the position of the

ecliptic among the stars must be well-nigh invariable.

180. Precession of the equinoxes. It is found that the longitudes

of the stars are continually increasing, at the rate of about 50" in

a year. Since this increase of longitude is common to all the

stars, and is nearly the same for each star, we can not ascribe it to

motions in the stars themselves. We hence conclude that the

vernal equinox, the point from which longitude is reckoned, has

a backward or retrograde motion along the ecliptic, amounting to

50" in a year, while the inclination of the equator to the ecliptic

remains nearly the same. This motion is called the precession of
the equinoxes, because the place of the equinox among the stars

each year precedes (with reference to the diurnal motion) that

which it had the previous year.
The amount of precession is 50".2 annually. In order to de-

termine how many years will be required for a complete revolu-

tion of the equinoctial points, we divide 1,296,000, the number of

seconds in the circumference of a circle, by 50".2, and obtain

25,800 years.
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181. The pole of the equator revolves round the pole of the ecliptic.

Since the position of the ecliptic is fixed, or nearly so, it is evi-

dent that the equator must change its position, otherwise there

could be no motion in the equinoctial points; and a motion of

the equator implies a motion of the poles of the equator. Since

the obliquity of the ecliptic remains nearly constant, the distance

from the pole of the equator to the pole of the ecliptic must re-

main nearly constant; and we may conceive the phenomena of

precession to arise from the revolution of the pole of the celestial

equator around the pole of the ecliptic, in the period of 25,800

years, at a constant distance of about 23f degrees.

182. The signs of the zodiac and the constellations of the zodiac.

At the time of the formation of the first catalogue of stars, 140

years before Christ, the signs of the ecliptic corresponded very

nearly to the constellations of the zodiac bearing the same names.

But in the interval of 2000 years since that period, the vernal

equinox has retrograded about 28
;
so that the sign Taurus now

corresponds nearly with the constellation Aries, the sign Gemini

with the constellation Taurus, and so for the others.

183. The pole star variesfrom age to age. The pole of the equa-
tor in its revolution about the pole of the ecliptic, must pass in

succession by different stars. At the time the first catalogue of

the stars was formed, the north pole was nearly 12 distant from

the present pole star, while its distance from it is now less than

If degrees. The pole will continue to approach this star till the

distance between them is about half a degree, and will then recede

from it. After a lapse of about 12,000 years, the pole will have

arrived within about 5 of a Lyra, the brightest star in the north-

ern hemisphere.

184. Cause of the precession of the equinoxes. The earth may be

considered as a sphere surrounded by a spheroidal shell, thick-

est at the equator, Art. 45. The matter of this shell may be re-

garded as forming a ring round the earth, in the plane of the equa-
tor. Now the tendency of the sun's action on this ring, except at

the time of the equinoxes, is always to make it turn round the in-

tersection of the equator with the ecliptic, toward the plane of this

latter circle.
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The solar force exerted on the part of this ring that is above

the ecliptic, may be resolved into two forces, one of which is in

the plane of the equator, and the other perpendicular to it. The

latter force tends to impress on the ring a motion round its inter-

section with the ecliptic. So, also, the solar force exerted on the

part of the ring that is below the ecliptic, may be resolved into

two, one in the plane of the equator, and the other perpendicu
lar to it. The sun's attraction upon the nearest half of the ring,

tends to bring the plane of the ring nearer to the plane of the

ecliptic ;
while its attraction upon the remoter half of the ring pro-

duces an opposite effect. But on account of the greater distance,

the latter effect is less than the former; so that the ring would

turn slowly around its intersection with the ecliptic, and the two

planes would ultimately coincide, were it not for the operation of

another cause.

185. How to find the resultant of two rotary motions. While the

equatorial ring has this tendency to turn about the line of the

equinoxes, it also rotates on an axis perpendicular to its plane in

twenty-four hours
;
that is, it has a tendency to rotate simultane-

ously about two different axes. The result is a tendency to ro-

tate about an intermediate axis, whose position is determined by
the following theorem :

rig. 54. If a body is revolving freely round the axis AB,
with the angular velocity V, and if a force be im-

pressed upon it which would make it revolve about
the axis AC with an an-

gular velocity V, then

the body will not revolve
about either of the axes AB, AC, but
about a third axis AD, situated in the

plane BAG, and the angle BAG will be
divided so that

sin. BAD : sin. CAD : : V : V.
Let PP' represent the axis of diurnal

rotation of

the equato- s

rial
ring, and

AB the line of the equinoxes, about
which it also tends slowly to revolve.

Pig. 55.
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The new axis of rotation, Ep', will be situated in the plane
and the sine of its angular distance from each of the former axes

will be in the inverse ratio of the angular velocity round that

axis. Kepeating the same construction for the following instant,

we shall find the new position of the axis will be Ep", and so on
;

that is, the pointy will be made to describe a curve around C, the

pole of the ecliptic.

186. Illustration from the Gyroscope, This motion of the earth's

equatorial ring may be very closely imitated by a modified form

of the gyroscope. Let AB represent a brass ring,

supported by wires AD, BD, which are connected

with an axis, DC, whose extremity is a little above

the centre of gravity of the ring AB, and rests

upon a support, CE. When the ring AB is at

rest, its axis DC will have a vertical position. If,

however, the axis be inclined from the vertical,

and be made to rotate by twirling it with the fin-

gers, the plane of the ring will turn slowly round

in azimuth, preserving, however, a nearly constant inclination to

the horizon
;
that is, the axis of the ring will describe the surface

of a cone, or the point F will describe the circumference of a cir-

cle about the point Gr.

187. Why the precession is so slow. If the earth were a perfect

sphere, the solar forces acting on the opposite hemispheres would

exactly balance one another, and could produce no displacement
of the earth's axis. If now we conceive the equatorial ring already

described, to be attached to the spherical part of the earth, which

is far heavier than the ring, it is evident that the ring, having to

drag around with it this great inert mass, will have its velocity of

retrogradation proportionally diminished. Thus, then, the entire

globe must have a motion similar to that ascribed to the ring, but

the motion will be extremely slow.

The moon produces a similar retrogradation in the intersection

of the equator with the plane of the lunar orbit, but, on account

of its nearness to the earth, its effect is more than double that of

the sun. The planets also, by their attraction, exert a small in-

fluence upon the position of the equatorial ring, but the result is

slightly to diminish the amount of precession. The whole effect
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of the sun and moon is 50".37, and that of the planets 0".16, leav-

ing the actual amount of precession 50".21 annually.

Natation.

188. The effect of the action of the sun and moon upon the

earth's equatorial ring, depends upon their position with regard

to the equator. When either body is in the plane of the equator,

its action can have no tendency to change the position of this

plane, and consequently none to change the positions of the equi-

noctial points. Its effect in producing these changes, increases

with the distance of the body from the equator, and is greatest

when that distance is greatest. Twice a year, therefore, viz., at

the equinoxes, the effect of the sun to produce precession is noth-

ing, while at the solstices the effect of the sun is a maximum.
On this account, the precession of the equinoxes, as well as the

obliquity of the ecliptic, is subject to a semi-annual variation,

which is called the solar nutation. There is also an inequality

depending upon the position of the moon which is called lunar

nutation. The maximum value of the lunar nutation in longi-

tude is 17".2, and that of the solar nutation 1".2.

In consequence of this oscillatory motion of the equator, Its

pole, in revolving about the pole of the ecliptic, does not move

Fig 57 strictly in a circle, but in a waving curve,
which passes alternately within and with-

out the circle, somewhat similar to that in

Fig. 67.

189. Tropical and sidereal years. The
time occupied by the sun in moving from

the vernal equinox to the vernal equinox

again, is called a tropical year.
The time occupied by the sun in moving from one fixed star

to the same fixed star again, is called a sidereal year.
On account of the precession of the equinoxes, the tropical year

is less than the sidereal year, the vernal equinox having gone west-
ward so as to meet the sun. The tropical year is less than the
sidereal year, by the time that the sun takes to move over 50".2
of his orbit. This amounts to 20m. 22s.

The mean length of a tropical year expressed in mean solar
time is 365d. 5h. 48m. 48s. The length of the sidereal year is

therefore 365d. 6h. 9m. 10s.
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Aberration.

190. The annual motion of the earth, combined with the mo-

tion of light, causes the stars to appear in a direction different

from their true direction. This displacement is called aberration.

The nature of this effect may be understood from the following
illustration :

If we suppose a shower of rain to fall during a dead calm in

vertical lines, if the observer be at rest the rain will appear to

fall vertically ;
and if the observer hold in his hand a tube in a

vertical position, a drop of rain may descend through the tube

without touching the sides
;
but if the observer move forward,

the rain will strike against his face
; and, in order that a drop of

FJo . ,
rain may descend through the tube without

,g' touching the sides, the tube must be inclined

forward. Suppose, while a rain-drop is fall-

ing from E to D with a uniform velocity, the

spectator moves from C to D, and carries the

tube inclined in the direction EC. A drop
of rain entering the tube at E, when the tube

has the position EC, would reach the ground
at D when the tube has come into the posi-^A c D B
tion FD

;
that is, the drop of rain will appear

to follow the direction EC.

Now CD=EDxtang. CED;
that is, the velocity of the observer= velocity of the rain x tan-

gent of the apparent deflection of the rain-drop.

191. To determine the amount of aberration. The aberration of

light is explained in a similar manner. Let AB be a small por-

tion of the earth's orbit, and S the position of a star. Let CD be

the distance through which the observer is carried in Is., and ED
the distance through which light moves in Is. If a straight tube

be conceived to be directed from the eye at C to the light at E,

so that the light shall be in the centre of its opening, and if the

tube moves with the eye from C to D, remaining constantly par-

allel to itself, the light, in moving from E to D, will pass along the

axis of the tube, and will arrive at D when the earth reaches the

same point. It is evident that the star will appear in the direc-

tion of the axis of the tube
;
that is, the star appears in the direc-



106

tion S'D instead of SD.
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.* ~ ...- The velocity of the earth in its orbit is

19 miles per second
;
the velocity of light is 192,000 miles per

second.

In the triangle ECD, we have

Fig. 53.

Hence CED=20";
that is, the aberration of a star which is 90 from the path in

which the earth is moving, amounts to 20".

192. Effect of aberration upon a star situated at the pole of t/ie

ecliptic. It is obvious that the aberration is always in the direc-

tion in which the earth is moving. Its effect, therefore, upon the

apparent position of a star, will vary with the season of the year
Let ABCD represent the annual

path of the earth around the sun
;

let S be the place of the sun, and

s the place of a star so situated that

the line 85 is perpendicular to the

plane of the ecliptic.

When the er.rth is at the point

A, moving toward B, the aberration

O will be in the direction sa ; that is,

the star appears at the point a.

When the earth has arrived at

B, the aberration will be in the di-

rection sb ; that is, the star appears
at the point b.

When the earth has arrived at C, the star appears at the point
c; and when the earth has arrived at D, the star appears at the

point d. But sa, sb, sc, sd are each 20", and therefore the star

will appear annually to describe a small circle in the heavens,
40" in diameter.

193. Effect upon a star situated in the plane ofthe ecliptic. If the

star were situated in the plane of the ecliptic, in the direction of
the line AC produced, then, when the earth is at C, the aberration
will be 20", as before

;
but when the earth is at D, the aberration

will be nothing, because the earth and the light of the star are

moving in the same direction. When the earth is at A, the ab-
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erration will again be 20'', but in a direction opposite to what it

was at C
;
and when the earth is at B, the aberration will again

be nothing. Hence we see that if a star be in the plane of the

ecliptic, it will appear to oscillate to and fro along a straight line,

20" on each side of the true position of the star, and this line will

be situated in the plane of the ecliptic.

A star situated between the ecliptic and its poles, will appear

annually to describe an ellipse whose major axis is 40", but its

minor axis will increase with its distance from the plane of the

ecliptic.

194. The apsides of the earttis orbit. The points of perihelion

and aphelion of the earth's orbit, are called by the common name
of apsides. The major axis of the earth's orbit is therefore called

the line of the apsides.

By comparing very distant observations, it is found that the

line of the apsides has a progressive motion, or a motion east-

ward amounting to about 12" annually. Since the equinox from

which longitude is reckoned moves in the opposite direction 50"

annually, the longitude of the perihelion increases about 62" an-

nually.

At this rate, the line of the apsides would complete a sidereal

revolution in 108,000 years, or a tropical revolution in 20,900

years. For the cause of this motion, see Arts. 279 478.

195. Changes in the position of the line of the apsides. The line

of the apsides, thus continually moving round, must at one period
have coincided with the line of the equinoxes. The longitude of

the perihelion in 1864 was 100 16', which point the earth passed
on the 1st of January. The time required to move over an arc

of 100^ at the rate of 62" annually, is about 5818 years, which

extends back nearly 4000 years before the Christian era a peri-

od remarkable for being that to which chronologists refer the

creation of the world. At this time the winter and spring were

equal, and longer than the summer and autumn, which were also

equal.

196. Mean place and true place ; mean anomaly and true anoma~

ly. The mean place of a body revolving in an orbit, is the place
where the body would have been if its angular velocity had been
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uniform
;
the true place of a body is the place where the body

actually is at any time. Equations are corrections which are ap-

plied to the mean place of a body, in order to get its true place.

The angular distance of a planet from its perihelion, as seen

from the sun, is called its anomaly.

If an imaginary planet be supposed to move from perihelion to

aphelion with a uniform angular motion round the sun, in the

same time that the real planet moves between the same points

with a variable angular motion, the angular distance of this im-

aginary planet from perihelion is called its mean anomaly, while

its actual distance at the same moment in its orbit is called its

true anomaly.

197. Equation of the centre. The difference between the mean

and the true anomaly is called the equation of the centre.

LetABCD be the orbit of

a planet having the sun in

one of the foci at S. With
the centre S, and a radius

equal to the square root of

JE
the product of the semi-axes

of the ellipse, describe the

circle EBFD; the area of

this circle will be equal to

that of the ellipse. At the

same time that a planet de-

parts from A, the perihelion, to describe the orbit ABCD, let an

imaginary planet start from E, and describe the circle EBFD
with a uniform motion, and perform a whole revolution in the

same period that the planet describes the ellipse. The imaginary

planet will describe around S, sectors of circles which- are pro-

portional to the times, and equal to the elliptic areas described in

the same time by the planet. Suppose the imaginary planet to

be at G; then take the sector ASH= ESG, and H will be the

place of the planet in the ellipse. The angle ESG- is called the

mean anomaly ; ASH is the true anomaly ; and GSH is the equa-
tion of the centre.

If we consider the mean and the true anomaly as agreeing at

A, the angles ESG and ASH must increase unequally, and the

true anomaly must exceed the mean. The equation of the cen-
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re increases till the planet reaches the point B. From B to C
the mean anomaly gains upon the true, until at C they coincide

that is, the equation of the centre is nothing. Proceeding from

C, the mean anomaly must exceed the true, and the equation of

the centre increases until the planet reaches the point D. From
D to A the true anomaly gains upon the mean, until at A they
coincide again. At the points B and D the equation of the cen-

tre is the greatest possible.

The greatest value of the equation of the centre for the sun is

1 55' 27".

198. The anomalistic year. The time occupied by the earth in

moving from the perihelion to the perihelion again, is called the

anomalistic year. This period must be a little longer than the

sidereal year, since the earth must describe a further arc of 11".8

before reaching the perihelion ;
and the difference will be equal

to the time necessary for the earth to dgsmbe 11".8 of its orbit,

or 4m. 35s., -which gives 365d. 6h. 13m. 45s. for the length of the

anomalistic year. This period is occasionally used in astronom-

ical investigations, but mankind are generally more concerned in

the tropical year, on which the return of the seasons depends.

CHAPTER VIII.
"

THE MOON ITS MOTION PHASES TELESCOPIC APPEARANCE.

199. Distance of the moon. The distance of the moon can be

computed when we know its horizontal parallax. This parallax
varies considerably during a revolution of the moon round the

earth. The equatorial parallax, when least, is 53' 48", and when

greatest, 61' 32". The mean horizontal parallax of the moon at

the equator is 57' 2".3. Hence the mean distance will be found

by the proportion
sin. 57' 2".3 : 3963.35 : : 1 : the moon's distance,

which is found to be 238,885 miles.

In the same manner, the moon's greatest distance is found to be

253,263 miles, and its least distance 221,436 miles.

200. Diameter of the moon. The absolute diameter of the moon
can be computed when we know its apparent diameter, and its
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distance from the earth. The apparent diameter varies according

to its distance from the earth. When nearest to us, it is 33' 31 ".1
;

but at its greatest distance it is only 29' 21'
/

.9. At its mean dis-

tance the apparent diameter is 31' 7".0. Hence the absolute di-

ameter will be found by the proportion

1 : 238,885 :: sin. 15' 33".5 : the moon's semi-diameter,

which is found to be 1081.1 miles. Hence the moon's diameter

is 2162 miles.

Since spheres are as the cubes of their diameters, the volume of

the moon is Ty<h that of the earth. Its density is about fths (.615)

the density of the earth, and its mass (=^x.615) is about ^th
of the mass of the earth.

.
-frd-'*/- 6*

201. Definitions. A body is said to be in conjunction with the

sun when its longitude is the same as that of the sun
;

it is said

to be in opposition to the sun when their longitudes differ 180
;

and to be in quadrature when their longitudes differ 90 or 270.
The term syzygy is used to denote either conjunction or opposi-
tion.

The octants are the four points midway between the syzygies
and quadratures.

The two points in which the orbit of the moon or a planet is

cut by the plane of the ecliptic are called nodes. That node at

which the body passes from the south to the north side of the

ecliptic is called the ascending nodc
}
and the other the descending

node.

202. Revolution of the moon. If the situations of the moon be

observed on successive nights, it will be found that it changes its

position among the stars, moving among them from west to east
;

that is, in a direction contrary to that of the diurnal motion. By
this motion it makes a complete circuit of the heavens in about
27 days. Hence either the moon revolves round the earth, or the

earth round the moon. Strictly speaking, the earth and moon
both revolve about their common centre of gravity. This is a

point in the line joining their centres, situated at an average dis-

tance of 2690 miles from the centre of the earth, or about 1270
miles berieafifthe surface of the earth.

203. Sidereal and synodic revolutions. The interval of time oc-
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cupied by the moon in performing one sidereal revolution round

the earth, or the time which elapses between her leaving a fixed

star until she again returns to it, is 27d. 7h. 43m. 11s.

The moon's mean daily motion is found by dividing 360 by
the number of days in one revolution. The mean daily motion

is thus found to be 13.1764,or about 13 degrees.

The synodical revolution of the moon is the interval between

two consecutive conjunctions or oppositions.

The synodical revolution of the moon is longer than the side-

real by 2d. oh. Om. 51s.
?
which is the time required by that body

to describe with its mean angular velocity of 13^ degrees per day
the arc traversed by the sun since the previous conjunction.
Hence we find the duration of the synodical period to be 29d.

12h. 44m. 2s.

204. How the si/nodical period is determined. The mean synod-
ical period may be determined with great accuracy by observa-

tions of eclipses of the moon. The middle of an eclipse is very
near the instant of opposition, and from the observations of the

eclipse the exact time of opposition may be easily computed.
Now eclipses have been very long observed, and the time of the

occurrence of some has been recorded even before the Christian

era. By comparing an eclipse observed by the Chaldeans, 720

B.C., with recent observations, the duration of the mean synodic

period has been ascertained with great accuracy.

205. How the sidereal period is derivedfrom the synodical. The
sidereal period may be deduced from the synodical as follows:

Let P= the length of the sidereal year,

p= the sidereal revolution of the moon,
T= the synodical period of the moon.

Then the arc which the moon describes in order to come into con-

junction writh the sun, exceeds 360 by the space which the sun

has passed over since the preceding conjunction. This excess

is found by the proportion

Then, as the whole distance the moon must move from the sun

to reach it again, is to one circumference, so is the time of describ-

ing the former, to the time of describing the latter; that is,
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or l + p:l::T:
PT 365.25x29.53

Whence l>

and this is the most accurate mode of determining the sidereal pe-

riod of the moon.

206. Moons path. The moon's observed right ascension and

declination enable us to determine her latitude and longitude. By
observing the moon from day to day when she passes the merid-

ian, we find that her path does not coincide with the ecliptic, but

is inclined to it at an angle of 5 8' 48", and intersects the eclip-

tic in two opposite points, which are called the moon's nodes.

207. Form of the moons orbit. It can be proved in a manner

similar to that given for the sun, Arts. Ill and 11-1, that the moon
in her orbit round the earth obeys the following laws :

1st. The moon's path is an ellipse, of which the earth occupies
a focus.

2d. The radius vector of the moon describes equal areas in equal
times.

The point in the moon's orbit nearest the earth is called her

perigee, and the point farthest from the earth her apogee. The
line joining the apogee and perigee is called the line of the apsides.

208. Eccentricity of the moon's orbit. The eccentricity of the

lunar orbit may be found by observing the greatest and least ap-

parent diameters of the moon, in the same manner as was done

in the case of the sun, Art 113.

Example. In the month of October, 1862, the greatest apparent
diameter of the moon was 33' 0".6, and the least was 29' 3-".0.

From these data determine the eccentricity of the lunar orbit dur-

ing that month.

The ratio of A to P is 0.89569.

Hence, by the formula e=
~\ p>

we find e 0.0550, or about -jL.
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209. Interval of moon's transits. The moon's mean daily mo-

tion in right ascension is 13.17, or 12.19 greater than that of

the sun. Hence, if on any given day we suppose the moon to be

on the meridian at the same instant with the sun, on the next day
she will not arrive at the meridian till 51m. after the sun

;
that

is, the interval between two successive meridian passages of the

moon is, on the average, 2-lh. 51m.

In consequence of the inequalities in the moon's motion in right

ascension, this interval varies from 2-lh. 38m. to 25h. 6m.

210. Moon's meridian altitude. The moon's altitude when it

crosses the meridian is very variable. The meridian altitude of

the sun at the summer solstice is 46 51' (twice the obliquity of

the ecliptic) greater than it is at the winter solstice. Now, since

the moon's orbit is inclined 5 9' to the plane of the ecliptic, the

moon will sometimes be distant from the ecliptic by this quanti-

ty on the north side, and at other times by the same quantity on

the south side
;
hence the greatest meridian altitude of the moon

will exceed its least by 46 54'+10 18', or 57 12'. In latitude

41 18', the greatest meridian altitude of the moon is 77 18', and

its least 20 6'.

211. The moon's phases. The different forms which the moon's

visible disc presents during a synodic revolution are called phases.

The moon's phases are completely accounted for by assuming
her to be an opaque globular body, rendered visible by reflecting

light received from the sun.

Let E be the earth, and ABODE the orbit of the moon, the

sun being supposed to be at a great distance in the direction AS.

When the moon is in conjunction at A, the enlightened half is

turned directly from the earth, and she must then be invisible.

It is then said to be new moon.

About 7 days after new moon, when she is in quadrature at

C, one half of her illumined surface is turned toward the earth,

and her enlightened disc appears as a semicircle. She is then

said to be in her^ir,^ quarter.

About 15 days after new moon, when she is in opposition at

F, the whole of her illumined surface is turned toward the earth,

and she appears as a full circle of light. It is then said to be

full moon.

H
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C*
About 7 days after full moon, when she is again in quadra-

ture at H, one half of her UJumined surface being turned toward

the earth, she again appears as a semicircle. She is then said to

be at her last quarter.

From new moon to first quarter, and from last quarter to new

moon, her enlightened disc is called a crescent. This phase is rep-

resented at B and I. The two extremities of the crescent are

called cusps, or horns. From first quarter to full moon, and from

full moon to last quarter, the form of her enlightened disc is said

to be gibbous. This phase is represented at D and GK These

phases prove conclusively that the moon shines by light borrowed

from the sun.

The interval from one new moon to the next new moon is

called a lunation, or lunar month. It is evidently the same as a

synodical revolution of the moon.

212. Obscure part of the moon's disc. When the moon is just vis-

ible after new moon, the whole of her disc is quite perceptible, the

part not fully illumined appearing with a faint light. As the

moon advances, the obscure part becomes more and more faint,

and it entirely disappears before full moon. This phenomenon
depends on light reflected from the earth to the moon, and from

the moon back to the earth.

When the moon is near to A, she receives light from nearly
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the whole of the earth's illumined surface, and this light, being in

part reflected back, renders visible that portion of the disc that is

not directly illumined by the sun. As the moon advances to*

ward opposition at F, the quantity of light she receives from the

illumined surface of the earth decreases
;
and its effect in render-

ing the obscure part visible, is farther diminished by the in-

creased light of the part which is directly illuminated by the

sun's rays.

It is obvious that, to an observer at the moon, the earth must

appear as a splendid moon, presenting all the phases of the moon
as seen from the earth, and having more than three times its ap-

parent diameter.

213. Daily retardation of the moon's rising or setting. The aver-

age daily retardation of the moon's rising or setting is the same

as that of her passage over the meridian
;
but the actual retarda-

tion, being affected by the moon's changes in declination, as well

as by the inequalities of her motion in right ascension, is subject

to greater variation. In the latitude of New York, the least daily

retardation is 23 minutes, and the greatest is Ih. 17m.

214. Harvest Moon. The less or greater retardation of the

moon's rising attracts most attention when it occurs at the time

of full moon. When the retardation has its least value near the

time of full moon, the moon rises soon after sunset on several suc-

cessive evenings; whereas, when the retardation is greatest, the

moon ceases in two or three days to be seen in the early part of

the evening.

When the moon is in that part of her orbit which makes the

least angle with the horizon, 13 degrees of her orbit (which is her

average progress in a day) rises above the horizon at New York
in less than 30 minutes. This happens for the full moon near

the time of the autumnal equinox. As this is about the period
of the English harvest, this moon, is hence called the Harvest

Moon.

215. Effect of altitude on the moon's apparent diameter. The ap-

parent diameter of the moon is not the same at the same instant

for all points of the earth, on account of their different distances

from the moon. As the moon rises above the horizon (if we sup-
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pose its distance from the centre of the earth to remain constant),

its distance from the place of observation must diminish, while its

altitude increases, and, consequently, its apparent diameter must

increase. This effect attains its maximum when the moon is in

the zenith of the spectator.

The distance AB is about equal to CB or CO, and exceeds AG
by AC, the radius of the

Fig. 61 TT/^S
J

, i -L

earth, which is about one

sixtieth of the moon's dis-

tance. Hence the angle

GAH, which the moou's

radius subtends when in

the zenith, exceeds the

angle BAD, which the

moon's radius subtends

when in the horizon, by about one sixtieth of the whole quantity;

that is, the augmentation of the moon's diameter on account of

her apparent altitude may amount to more than half a minute.

The apparent enlargement of the moon near the horizon is an

optical illusion, as explained Art. 92.

216. Has Hie moon an atmosphere? There is no considerable at-

mosphere surrounding the moon. This is proved by the absence

of twilight. Upon the earth, twilight continues until the sun is

18 below the horizon
;
that is, day and night are separated by a

belt 1200 miles in breadth, in which the transition from light to

darkness is not sudden, but gradual the light fading away into

the darkness by imperceptible gradations. This twilight results

from the refraction and reflection of light by our atmosphere;
and if the moon had an atmosphere, we should notice, in like man-

ner, a gradual transition from the bright to the dark portions of

the moon's surface. Such, however, is not the case. The bound-

ary between the light and darkness, though irregular, is perfectly
well defined and sudden. Close to this boundary, the unillumined

portion of the moon appears just as dark as any portion of the

moon's unillumined surface.

217. Argumentfrom the absence of refraction. The absence ofan

atmosphere is also proved by the absence of refraction when the

moon passes between us and the distant stars. Let AB represent
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Fig. 63. the disc of the

moon, and CD an
^'

atmosphere sup-

posed to surround

it. Let SAE rep-

resent a straight

line touching the moon at A, and proceeding toward the earth,

and let S be a star situated in the direction of this line. If the

moon had no atmosphere, this star would appear to touch the edge
of the moon at A

;
but if the moon had an atmosphere, this at-

mosphere would refract light ;
and a star behind the edge of the

moon in the position S' would be visible at the earth, for the ray
S'A would be bent by the atmosphere into the direction AE'.

So, also, near the opposite limb of the moon, a star might be seen

at the earth, although really behind the edge of the moon. Hence

we see that if the moon had an atmosphere, the time during which

a star would be concealed by the moon would be less than if it

had no atmosphere ;
and the amount of this effect must be pro-

portional to the density of the atmosphere.

Many thousand occultations of stars by the moon have been

observed, and no appreciable effect of refraction has ever been

detected. This species of observation is susceptible of such accu-

racy, that if the refraction amounted to 4" of arc, it is believed that

it could not fail to be detected in the mean of a large number of

observations. Now the earth's atmosphere changes the direction

of a ray of light more than half a degree when it enters the at-

mosphere, and the same when it leaves it, making a total deflec-

tion of over 4000". Hence we conclude that if the moon have an

atmosphere, its density can not exceed one thousandth part of the

density of our own. Such an atmosphere is more rare than that

which remains under the receiver of the best air-pump when it

has reached its limit of exhaustion.

218. Light of the full moon. The light received from the full

moon was compared by Bouguer with the light received from the

sun, by comparing each with the light of a candle. The light of

the sun being admitted into a dark room through a small aper-

ture, he placed in front of the operator a concave lens, to dimin-

ish the intensity of the sun's rays by causing them to diverge.

He then placed a candle at such a distance that its light received
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upon a screen was exactly equal to that of the sun received upon

the same screen.

Repeating this experiment at night with the full moon, he com-

pared the light of the moon with that of the candle. By several

experiments of this kind, he arrived at the conclusion that the sun

illumines the earth 300,000 times more than the full moon.

Professor G. P. Bond compared the light of the moon with that

of the sun by placing in the sun's light a glass globe with a sil-

vered surface, and comparing the brightness of the reflected im-

age of the sun with an artificial light, and afterward comparing
the light of the full moon with the same standard. He hence in-

ferred that the light of the sun was 470,000 times that of the full

moon.

219. Heat of the moon. Until recently, the most delicate exper-

iments had failed to detect any heat in the light of the moon. The

light of the full moon has been collected into the focus of a con-

cave mirror of such a magnitude as, if exposed to the sun's light,

would have been sufficient to evaporate platinum ; yet no sensi-

ble effect was produced upon the bulb of a differential thermom-

eter so delicate as to show a change of temperature amounting to

the 500th part of a degree. This experiment, if reliable, would

indicate that the moon reflects a less proportion of the heating

rays than of the luminous rays of the sun.

In 1846 Melloni repeated this experiment on the top of Mount
Vesuvius with a lens of three feet diameter, and found feeble in-

dications of heat when the light of the moon was concentrated

upon a delicate thermo-multiplier.
In the summer of 1856, Professor Smyth repeated this experi-

ment on the summit of Teneriffe, over 10,000 feet above the sea,

and found that the heat of the full moon was equal to one third

that of an ordinary candle placed at a distance of 15 feet.

Even this small amount of heat appears to be absorbed by the

atmosphere before reaching the earth
;
and near the earth's sur-

face, the moon's heat is inappreciable by the most delicate means
of observation hitherto employed.

220. Telescopic appearance of the moon. If with a telescope we
examine the bounding line between the illumined and dark por-
tions of the moon's surface, especially about the time of the first
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quarter, we shall find it to be very broken and irregular. At
some distance from the generally illumined surface we may no-

tice bright spots, often entirely surrounded by a dark ground ;
and

we also find dark spots entirely surrounded by an illumined sur-

face. These appearances change sensibly in a few hours. As the

light of the sun advances upon the moon, the dark spots become

bright ;
and at full moon they all disappear, and we only notice

that certain regions appear more dusky than others. The moon's

surface is therefore uneven
; and, by observing the passage of the

sun's light over these spots, we may form a judgment of their di-

mensions and figure.

The most favorable time for observing these inequalities is near-

the first or third quarter, because then the shadows of the mount-

ains appear of their greatest length, and are not shortened by be-

ing seen obliquely. See Plate II., Fig. 2, which gives a represent-

ation of a small portion of the moon's surface as seen through a

powerful telescope.

221. Particular phenomena described. Near the bounding line

of the moon's illumined surface we frequently observe the follow-

ing phenomena : A bright ring nearly circular
;
within it, on the

side next the sun, a black circular segment ;
and without it, on

the side opposite to the sun, a black region with a boundary more

or less jagged. Near the centre of the circle we sometimes notice

a bright spot, and a black stripe extending from it opposite to the

sun. After a few hours, the black portions are found to have con-

tracted in extent, and in a day or two entirely disappear.

After about two weeks these dark portions reappear, but on

the side opposite to that on which they were before seen
;
and

they increase in length until they pass entirely within the dark

portion of the moon. These appearances can only be explained

by admitting the existence of a circular wall, rising above the

general level of the moon's surface, and inclosing a large basin,

from the middle of which rises a conical peak.

222. Height of the lunar mountains. If the distance of the il-

luminated summit of a mountain from the enlightened part of the

disc be measured with a micrometer, and the positions of the sun

and moon at the time be obtained by observation or computation,
the height of the mountain may be computed.
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LetAFE be the illuminated hemisphere

^Fig.M.
of the moon, SA a ray of the sun touch-

mgl ^\ & ing the moon at A, and let BD be a

^^ \ mountain so elevated that its summit just

t- H \ reaches to the ray SAB, and is illumined

J while the intervening space AB is dark.

/ Suppose now the earth to be in the direc-

tion of the diameter AE produced. Let

the angle which AB subtends at the earth

be measured with a micrometer; then, since the distance of the

moon from the earth is known, the absolute length of AB can be

computed. Then, in the right-angled triangle ABC, AC, the ra-

dius of the moon, is known, whence BC can be computed ;
and

subtracting AC from BC, gives BD, the height of the mountain.

If the earth is so situated that the line AB is not seen perpen-

dicularly, since we know the relative positions of the sun and

moon, we can determine the inclination at which AB is seen, and

hence the absolute length of AB.
The height of a mountain may also be computed from the

measured length of the shadow it casts.

The greatest elevation of any lunar mountain which has been

observed is 23,800 feet. The altitudes of the higher mountains

in the moon are probably as accurately known as those of the

highest mountains on the earth.

223. Circular craters. Mountain ranges, approaching nearly to

the form of circles, are very common on the moon's surface. They
sometimes have a diameter of over 50 miles, and a height of 2 or

3 miles. Tycho, Kepler, and Copernicus are among the most re-

markable of these mountain ranges. See Plate II., Fig. 1. Ty-

cho, No. 1, is near the moon's southern limb
; Kepler, No. 2, near

the eastern limb
;
and Copernicus, No. 3, a little west of Kepler.

These circular mountains bear an obvious analogy to the volcanic

craters upon the earth.

224. The crater of Kilauea, on one of the Sandwich Islands, is a

vast basin, more than three miles in its longer diameter, and near

ly 1000 feet deep. From the bottom of the basin rise numerous
little cones, from which smoke is almost constantly emitted, and
sometimes melted lava. The craters of most volcanoes exhibit
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an irregular circular wall of considerable height, sometimes 2 or

Fig. 65.

3 miles, and within this wall rise one or two cones formed by the

occasional overflowing of the lava.

225. Lunar volcanoes compared with terrestrial. The lunar vol-

canoes differ from the terrestrial in their enormous dimensions

and immense number. This may be due, in some degree, to the

feeble attraction of the moon, since objects on the moon's surface

weigh only one sixth what they would on the earth.

226. It is certain that most of the lunar volcanoes are entirely

extinct; and it is doubted whether any signs of eruption have ever

been noticed. The spot called Aristarchus, marked 4 on Fig. 1,

Plate II., is so brilliant that some have concluded it to be an active

volcano. Herschel observed on the dark portion of the moon
three bright points, which he ascribed to volcanic fires

;
but the

same lights may be seen every month, and they are probably to

be ascribed to mountain peaks which have an unusual power of

reflecting the feeble light which is emitted by the earth. It is

believed that all the inequalities of brightness observed on the

moon's surface (with the exception of the shadows described in

Arts. 220-1) result from a difference in the nature of the reflect-

ing materials. Two distinguished astronomers, Beer and Madler,

who have studied the moon's surface with greater care than any
one else, assert that they have never seen any thing that could au-
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thorize the conclusion that there are in the moon volcanoes now

in a state of ignition.

227. Streaks of light from Tycho. Very remarkable streaks of

light are seen diverging from several of the lunar craters. These

are quite conspicuous about Tycho, Kepler, Copernicus, and Aris-

tarchus. One of these streaks of light diverging from Tycho can

be traced 1700 miles. These streaks cross ridges and valleys

without interruption ;
and some of them have been noticed to

cast shadows. They are thought to have resulted from some vi-

olent volcanic eruption, by which enormous crevices were opened
in the moon's surface. These crevices are supposed to have been

filled with melted lava, which congealed into a glassy rock, hav-

ing a more brilliant reflecting surface than the general disc of the

moon. Similar phenomena, but upon a far less extensive scale.

have taken place on the earth's surface.

228. There is no water on the moon's surface. The dusky re-

gions, which, were once supposed to be seas, are regions compara-

tively level
;
but upon which, with a good telescope, we can de-

tect black shadows, indicating the existence of permanent ine-

qualities, which could not exist on a fluid surface. Moreover, if

there were any water on the moon's surface, a portion of it would

rise in vapor, and form an atmosphere which would refract light
to an extent far beyond what we actually observe.

229. Can volcanoes exist without air or water? It may be ob-

jected that volcanoes could not exist without air or water. It is

not certain that the presence of air is necessary to the activity of

a volcano. Volcanoes may be ascribed to the primitive heat of

the globe, or to galvanic action on a large scale. A commotion
of the melted lava would be instantly produced by the introduc-

tion of water, which would suddenly generate large quantities of

steam
;
and it might also be produced by the presence of various

other bodies
; as, for example, sulphur, which almost invariably

accompanies volcanic eruptions. Some similar substance might
cause an eruption of a lunar volcano without the agency of water.

230. Can animal life exist upon the moon ? Air and water are

necessary to the support of both animal and vegetable life. It is
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doubtful, therefore, whether even the humblest form of life with

which we are acquainted could exist upon the moon. Nothing
has ever been discovered upon the moon's surface to indicate the

agency of human beings, or the presence of any form of animal

or vegetable life. The extremes of temperature upon the moon's

surface must be far more violent than they are upon the earth.

For 14 successive days the sun shines uninterruptedly upon the

same portion of the moon, and for the next 14 days his light is

entirely withdrawn. During the first period, the moon's surface

must become intensely heated
;
and during the next fortnight the

cold must be equally severe, since there is no atmosphere or clouds

to obstruct the radiation of heat.

While, then, we are compelled to say that Infinite wisdom and

power can create beings to live in such a world, we can safely

assert that no varieties of animal or vegetable life with which we
are acquainted can exist in the moon.

231. Does the moon influence the weather? The effect of the

moon upon the weather is very slight, and can only be detected by

taking the mean of a long-continued series of accurate observa-

tions. From a comparison of observations of forty years, it has

been concluded that there is a monthly fluctuation of temperature

amounting to about two degrees of Fahrenheit, which is due to the

moon's influence, the maximum occurring six or seven days aft-

er new moon, and the minimum about four days after full.

The moon also appears to exert a slight influence upon the

cloudiness of the sky, as well as upon the number of rainy days,

the greatest cloudiness occurring near the third quarter, and the

least cloudiness about the time of new moon, the fluctuation

amounting to four per cent, of the entire sky.

Although the preceding results seem to be well established, it

will be noticed that the effect ascribed to the moon is quite small,

so that to ordinary daily observation this influence is lost in the

irregular fluctuations of the weather, which are due to other causes.

232. Does the moon influence the pressure of the air? Many have

imagined that inasmuch as the moon elevates the water of the

ocean, its disturbing influence ought to be much greater upon a

fluid of such mobility as our atmosphere. The moon does indeed

influence the pressure of the air, but its disturbing force is ex-

tremely small. At Singapore, under the equator, when the moon
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is on the meridian, the barometer is higher by -nnnrth of an inch

than when the moon is six hours from the meridian
;
at St. He-

lena, in Lat. 15 55', this difference amounts to -nnnrth of an inch
;

and in our latitude the difference should be still less. This effect

is so minute that it can only be detected by the most accurate ob-

servations, continued for a period of several years. Indeed, it has

never been shown that the moon exerts any influence upon the

weather, except that which is of the feeblest kind, and which is

only appreciable after a very long series of the best observations.

233. Moon's rotation upon an axis. The various spots on the

moon always occupy nearly the same positions upon the disc, from

which it follows that nearly the same surface is always turned to-

ward the earth. Hence we conclude that the moon rotates upon
an axis in the same time that she makes a revolution in her orbit.

If the moon had no motion of rotation, then in opposite parts of

her orbit she would present opposite sides to the earth. In order

that a globe which revolves in a circle around a centre should

turn continually the same hemisphere toward that centre, it is

necessary that it should make one rotation upon its axis in the

time it takes to revolve about the centre.

234. Libralions of the moon. Although it is true that nearly
the same hemisphere of the moon is always turned toward the

earth, yet the moon has apparently a slight oscillatory motion,

which allows us to see a portion of the opposite hemisphere.
This oscillatory motion is called libration.

Libration in longitude. While the moon's angular velocity on

its axis is rigorously uniform throughout the month, its angular

velocity in its orbit is not uniform, being most rapid when nearest

the earth. Hence we see at one time a little more of the eastern

or western edge of the moon than we do at another time. This

is called the libration in longitude.
Libration in latitude. The axis of the moon is not quite per-

pendicular to the plane of her orbit, but makes an angle with it

of 83 degrees. On account of this inclination, the northern and

southern poles of the moon incline alternately 6 to and from

the earth. "When the north pole leans toward the earth, we see a

little more of that region, and a little less when it leans the con-

trary way. This variation is called the libration in latitude.
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Diurnal libration. By the diurnal motion of the earth, we are

carried with it round its axis; and if the moon presented exactly

the same hemisphere toward the earth's centre, the hemisphere
visible to us when the moon rises, would be different from that

which would be visible to us when the moon sets. This is an-

other cause of a variation in the edges of the moon's disc, and is

called the diurnal libration.

In consequence of all these librations, we can see somewhat
more than half of the surface of the moon

; yet there remains

about |ths of its surface which is always hidden from our view.

235. Lunar day. The rotation of the moon upon its axis, be-

ing equal to that of its revolution in its orbit, is 27^ days. The
intervals of light and darkness to the inhabitants of the moon, if

there were any, would be altogether different from those upon the

earth. There would be about 35-i hours of continued light, alter-

nating with 354 hours of continued darkness. The heavens would

be perpetually serene and cloudless. The stars and planets would
shine with extraordinary splendor as well in the day as in the

night. The inclination of her axis being small, there would be

no sensible change of seasons. The inhabitants of one hemisphere
could never see the earth

;
while the inhabitants of the other

would have it constantly in their firmament by day and by night,
and always nearly in the same position. To those who inhabit

the central part of the hemisphere presented to us, the earth would

appear stationary in the zenith, with the exception of the small

effect due to libration.

The earth illumined by the sun would appear as the moon does

to us, but with a superficial magnitude about fourteen times as

great. Its phases would also be similar to those which we see in

the moon.

236. Equality of the periods of rotation and revolution. That the

moon should rotate on an axis in exactly the same time that is

required for a revolution around the earth, can not be supposed
to be accidental.

We are forced, then, to seek for some physical cause to explain
this coincidence. If we admit that originally these two motions

were nearly equal, the exact equality may be explained as follows :

The moon, like tho earth, was probably once in a plastic condi-



126 ASTRONOMY.

tion. The earth would then act upon the moon as the moon acts

upon the earth in raising the tides, only with much greater power;

that is, if, would give the moon an elongated figure, its major axis

pointing toward the centre of the earth. If the moon has such

an elongated figure, the earth must act upon it as upon a pendu-

lum. When a pendulum is deflected from the vertical position,

the earth's attraction brings it back again, causing it to oscillate

to and fro. So, also, if the longer axis of the moon were deflected

from pointing toward the earth, the earth's attraction would tend

to bring it back to this position, thus tending to establish a rigor-

ous equality between the times of rotation and revolution of the

moon.

237. Position of the moon's centre of gravity. From a careful

study of the moon's motions, Hansen concludes that the centre

of gravity of the moon does not coincide with its centre of figure,

and that the centre of figure is nearer to us by 33 miles than the

centre of gravity ;
in other words, the hemisphere which is turned

toward the earth is lighter than the opposite hemisphere, and may
be regarded as an enormous mountain, rising 33 miles above the

mean level of the moon. This lightness may be the result of vol-

canic energy, upheaving the crust, and leaving large cavities be-

neath
;
and these cavities must be mainly on the side of the moon

which is turned toward the earth. This cause may have contrib-

uted to produce that elongated figure of the moon which enables

us to explain the exact equality between the time of rotation upon
its axis and of revolution about the earth. This conclusion of

Hansen is not accepted by all astronomers.

238. Path of the moon in its motion about the sun. While the

moon revolves about the earth, it also accompanies the earth in

its motion about the sun. The actual path described by the

moon will then be an undulating line, alternately within and with-

out the orbit of the earth. The undulations are, however, so

small, in comparison with the dimensions of the earth's orbit, that

the path of the moon is always concave toward the sun. The
distance, AB, passed over by the earth in a fortnight, is about 24
millions of miles. If we draw a chord connecting these points,
this chord, at its middle point, will fall about 700,000 miles within
the orbit of the earth, while the greatest distance of the moon from
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fig. 66.

the earth is only 253,000 miles. The moon's path, therefore, ap-

proaches so near to that of the earth as to be always concave to-

ward the sun.

239. Changes of the moon's orbit. The elliptic path described

by the moon, changes gradually from month to month both in

form and position. Its eccentricity varies within certain limits,

being sometimes as great as 0.065, and sometimes as small as

0.049. Its mean value is 0.05484, or about ^th.
The major axis of the moon's orbit is not fixed, but has a di-

rect motion on the ecliptic at the rate of about 41 in a year, ac-

complishing a complete revolution in a little less than nine years ;

so that in 4^- years the perigee arrives where the apogee was be-

fore. This motion of the line of the apsides is not equable

throughout the whole of a lunar month
;
for when the moon is in

syzygies,the line of apsides advances in the order of the signs, but

is retrograde in quadratures. The direct motion is, however,

greater than the retrograde.

240. Motion of the line of the nodes. The line in which the plane
of the moon's orbit cuts the ecliptic, is called the line of the nodes.

The position of the nodes is found by observing the longitude of

the moon when she has no latitude
;
and it appears, by a compari-

son of such observations, that the line of the nodes is not fixed,

but has a slow retrograde motion at the rate of about 19 in a

year. By this motion the nodes make a mean tropical revolution

in 18 years and 224 days, nearly. It is not, however, an equable
motion throughout the whole of the moon's revolution. The node

is generally stationary when the moon is in quadrature, or in the

ecliptic ;
in all other parts of the orbit it has a retrograde motion,

which is greater the nearer the moon is to the syzygies, or the

greater the distance from the ecliptic.

Thus we see that the path of the moon does not return into it-
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self, but is a curve of the most complicated kind, whose form and

position are both in a state of continual change.

241. The lunar cycle. The lunar cycle consists of 235 synodical

revolutions of the moon, which differ from 19 years of 365^ days

only by about an hour and a half.

For 29.5305887 x 235 = 6939.688 days.

And 365^x19= 6939.75 days.

If, then, full moon should happen on the 1st of January in the

first year of the cycle, it will happen on that day (or within a very
short time of its beginning or ending) again after a lapse of 19

years; and all the full moons in the interval will occur on the

same days of the month as in the preceding cycle. This period
of 19 years is sometimes called the Metonic Cycle, and the year of

the Metonic cycle is called the Golden Number. This cycle of 19

years is used for finding Easter. Easter day is the first Sunday
after the full moon which happens upon or next after the 21st

day of March. The present lunar cycle began in 1862, when full

moon occurred April 14th. Full moon also occurred on the same

day of April in 1843, 1824, etc.

The following are the dates of the full moons next following
the vernal equinox for several lunar cycles:

Year.
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pulse given to the body, which alone would have caused it to de-

scribe a straight line
;
the other a deflecting force, which continu-

ally urges the body toward some point out of the original line of

motion.

243. Kepler's laws. Before Newton's discovery of the law of

universal gravitation, the paths in which the planets revolve about

the sun had been ascertained by observation
;
and the following

laws, discovered by Kepler, and afterward called Kepler's laws.

were known to be true :

1st. The radius vector of every planet describes about the sun equal

areas in equal times.

2d. The path of every planet is an ellipse, having the sun in one of

its foci.

3d. The squares of the times of revolution are as the cubes of the

mean distances from the sun, or as the cubes of the major axes of tlie

orbits.

From these facts, revealed by observation, we may deduce the

]aw of attractive force upon which they depend.

2-1-1. Theorem. When a body moves in a curve, acted on by a

force tending to a fixed point, the areas which it describes by radii

drawn to the centre offorce are in a constant plane, and are propor-
tional to the times.

Let S be the centre of

attraction; let the time be

divided into short and

equal portions, and in the

first portion let the body
describe AB. In the sec-

ond portion of time, if no

new force were to act upon
the body, it would proceed S

to c in the same straight

line, describing Be equal
to AB. But when the

body has arrived at B, let

a force tending to the cen-

tre S act on it by a single

instantaneous impulse^and
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compel the body to continue its motion along the line BC. Draw

Cc parallel to BS, and at the end of the second portion of time,

the body will be found in C, in the same plane with the triangle

ASB. Join SC
;
and because SB and Cc are parallel, the triangle

SBC will be equal to the triangle SBc, and therefore also to the

triangle SAB, because Be is equal to BA.
In like manner, if a centripetal force toward S act impulsively

at C, D, E, etc., at the end of equal successive portions of time,

causing the body to describe the straight lines CD, DE, EF, etc.,

these lines will all lie in the same plane, and the triangles SCD,

SDE, SEF will each be equal to SAB and SBC. Therefore these

triangles will be described in equal times, and will be in a con

stant plane ;
and we shall have

polygon SADS : polygon SAFS : : time in AD : time in AF.
Let now the number of the portions of time in AD, AF be aug-

mented, and their magnitude be diminished in infinitum, the pe-

rimeter ABCDEF ultimately becomes a curve line, and the force

which acted impulsively at B, C, D, E, etc., becomes a force which

acts continually at all points. Therefore, in this case also, we have

curvilinear area SADS : curvilinear area SAFS
: : time in AD : time in AF.

245. Theorem. The velocity of a body moving in a curve and at-

tracted to a faced centre, is inversely as the perpendicular from the

fixed centre upon the tangent to the curve.

For the velocities in the polygon at two points, A, E, are as

AB, EF, because these lines are described in equal portions of

time. But if SY, SZ be drawn perpendicular to these lines.

SY.AB = SZ.EF, because the triangles SAB, SEF are equal
Therefore velocity at A : velocity at E : : SZ : SY.
And ultimate!}

7

',
the velocity in the polygon becomes the veloc-

ity in the curve, and the lines AY, EZ are the tangents to the

curve at A and E.

246. Theorem. If a body moves in a curve line in a constant

plane, and by a radius drawn to a fixed point, describes areas about

tiiat point proportional to tiie times, it is urged by a centralforce tend-

ing to tiiat point.

Every body which moves in a curve line is deflected from a

straight line by some force acting upon it. If the body were to
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describe the polygon ABCDEF, describing the equal triangles

SAB, SBC, etc., in equal times, it must at B be acted on by a force

directed toward S. For in AB produced, take Be equal to AB.
Then the triangle ASB= BSc. But, by supposition, ASB=BSC.

Therefore, BSC=BSc; and, consequently, Cc is parallel to SB.

Now BG may be regarded as the resultant of two forces, one the

impulse in the direction of AB produced, and the other a deflect-

ing force Cc, which is parallel to SB
;
that is, the deflecting force

at B is directed toward the sun. But ultimately the motion in

the polygon will coincide with the motion in the curve, and the

force in the polygon will be the same as the force in the curve.

Therefore in the curvilinear motion the proposition is true.

Now since the planets describe about the sun equal areas in

equal times, it follows that the force which deflects them from a

straight line is directed toward the centre of the sun.

247. Theorem. When bodies describe different circles with uni-

form motions, the forces tend to the centres of the circles, and are as the

squares of the velocities divided by the radii of the circles.

By Art. 246 the forces tend to

the centres of the circles. Let

AC, ac be arcs described in two

different circles in equal times.

Draw the tangents AB, ab ;

draw BC, be perpendicular to

the tangents, and CD, cd paral-

lel to them. Draw also the

chords AC, ac. Then BC, be, or AD, ad, are the spaces through
which the bodies are deflected from the tangents by the action

of the forces to S and s. Then

Also

Fig. 6S.

/

AD : AC :: AC : AE
;
whence AD=^.

ac2

.

2as

Now when the arc is taken indefinitely small, we shall have

the centripetal force at A : centripetal force at a : : the square of

the arc AC divided by the radius AS : the square of the arc ac

divided by the radius as. But the arcs AC, ac, described in equal

times, are as the velocities
;
hence in circles, if F represent the

centripetal force, V the velocity, and E the radius of the circle.
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we shall have

or
V2

F varies as-rr.
XV

248. Theorem. When bodies describe different circles with uniform
motions

,
*Ae central force is as the radius of the circle divided by the

square of the time of one revolution.

Let E be the radius of the circle, V the velocity, and T the time

of describing the whole circle. The circumference of the circle

will be represented by 2?rR, which equals VT ;
hence ~= r

-r .

V2
4;r

2E2 E
But by Art. 247, F varies as -, or

,
which varies as

r ;

that is.

Fig. CO.

249. Theorem. If a body describes an ellipse, being continually

urged by a fcrce directed toward the focus, that force must vary in-

versely as the square of the distance.

Let APB represent
the elliptic orbit of a

planet, and S the fo-

cus occupied by the

sun. Let PQ be an

arc described by the

planet in an indefi-

nitely short time, t.

Draw the diameter

PG; also the ordinate

Qy parallel to the tan-

gentatP; and letDK
be the diameter which is conjugate to PG. Draw the radius vec-
tor SP, cutting the diameter DK in E, and the ordinate Qv in x,
and complete the parallelogram QxPE. Also draw QT perpen-
dicular to SP, and PF perpendicular to DK.

If the arc PQ be taken
indefinitely small, it may be considered

as a straight line described by the joint action of the force which
is directed toward S, and of the projectile force which acts in the
direction of PR That is, the force PQ may be resolved into the
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two forces Qx and Pz. During the time
,
the deflecting force,

if it acted alone, would cause the body to describe Px. Hence,

denoting the intensity of this force by F, we have, by Mechanics,

Px=$l2
;

and taking t for the unit of time, we have

F= 2Pz.

By similar triangles, P* : Pi- : : PE : PC.

By Ellipse, Prop. XXL, Gu.Pv: Qv* : : PC2
: CD2

.

Compounding these two proportions, we have

Gy.P;r:Qy
2 ::PC.AC:CD2

,

since PE= AC, Geom., Ellipse, Prop. VIII.

But \vhen the arc PQ is taken indefinitely small, Qy=Qr, and

Gy=2PC.

^ . Gy.Pz.CD2 2Pz.CD2
,1NHence Q,2=_____=____. (l)

Again, by similar triangles,

Q*:QT::PE(=CA):PF.
Also (Ellipse, Prop. XVIII.),

CD . PF=CA . CB, or CA : PF : : CD : CB.

Hence Qx: QT: : CD: CB;

n QT.CD QT2 .CD2

.'.Qg= CB ,
and Qx*= ^ . (2)

From equations (1) and (2) we have

2P;r.CD2_QT2 .CD2

AC CB2
'

Represent half the major axis of the ellipse by a, and half the

minor axis by b ; then

QT2 .AC_QT2 .q

CB2
tf

If now we denote the area of the elliptical sector SQP by &,

we have A=|SP.QT;
97- d.Z-2

and hence QT=|p and QT2

-|^.
Substituting this value in equation (3), we have

If we consider the action of the deflecting force at some other

point of the ellipse, as P', and denote the intensity of the force by
IHT - 4&2 a

F
,
we shall have F =ep^ 75-
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But by Kepler's first law, k is a constant quantity ;
hence we

have
F:F'::SP'2 :SP2

;

or the deflecting force varies inversely as the square of the dis-

tance of the planet from the sun.

250. Theorem. Wlien several bodies revolve in ellipses about the

same centre offorce, varying inversely as the square of the distance,

the squares of the periodic times ivill vary as the cubes of the major
axes.

Let T denote the periodic time of a planet, expressed in sec-

onds, and k the area described by the radius vector in one second
;

then the entire area of the ellipse will be represented by T&. But

this area is also represented by nab (Ellipse, Prop. XXIII.).

Hence
T^iraft, or &=^.

Eepresent the distance of the planet from the sun by E ; then,

by the last article,

Tj
1

If we represent by / the value of the deflecting force F at the

distance of unity, then, by hypothesis,

/:F::p:i;
that is, F=^.

f A o . 1

Hence -

that is

If T' denote the periodic time of a second planet, and a! half

the major axis of its orbit, we shall have

, r Vf
'

whence T : T' : : a* : a*, or T2
: T2

: : a3
: a'

3
.

Thus we perceive that Kepler's first law would hold true, what-
ever might be the law by which the deflecting force depended
upon the distance

;
but the second and third laws prove that in

the solar system this deflecting force varies inversely as the square
of the distance.
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251. Modification of Kepler's third laic. Kepler's third law is

strictly true only in the case of planets whose quantity of matter

,

is inappreciable in comparison with that of the central body. In

considering the motion of a planet, for instance Jupiter, round the

sun, it is necessary to remember that while the sun attracts Ju-

piter, Jupiter also attracts the sun. The motion which the attrac-

tion ofJupiter produces in the sun, is less than the motion which
the attraction of the sun produces in Jupiter, in the same ratio in

which Jupiter is smaller than the sun. If the sun and Jupiter
were allowed to approach one another, their rate of approach
would be the sum of the motions of the sun and Jupiter, and
would therefore be greater than their rate of approach if the sun

were not movable, in the same ratio in which the sum of the

masses of the sun and Jupiter is greater than the sun's mass.

Consequently, in comparing the orbits described by different plan-
ets round the sun, we must suppose the central force to be the at-

traction of a mass equal to the sum of the sun and planet
If we regard the mass of the sun as unity, and represent the

masses of two planets by m and m', then we shall have

T2 . T /2 . .
ft3

.
a

'3

."
I+m

'

1 + m' '

and this proportion is rigorously true.

252. The force that retains the moon in her orbit is the same as

that which causes bodies to fall near the eartJCs surface, the force being

diminished in proportion to the square of the distancefrom the eartits

centre.

Let E be the centre of the earth, A a point
on its surface, and BC a part of the moon's or- D_

bit assumed to be circular. When the moon is

at any point, B, in her orbit, she would move on

in the direction of the line BD, a tangent to the

orbit at B, if she was not acted upon by some

deflecting force. Let F be her place in her orbit

one second of time after she was at B, and let

FGr be drawn parallel to BD, and FH parallel

to EB. The line FH, or its equal BG-, is the

distance the moon has been drawn, during one

second, from the tangent toward the earth at E.

If we divide the circumference of the moon's
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orbit by the number of seconds in the time of one revolution, we

shall have the length of the arc BF. Now, by Geometry,
2BE:BF::BF:BG.

But the chord BF does not differ sensibly from the arc BF,

already obtained. BG is thus found, by computation, to be 0.0534

inch.

At the equator, a body falls through 192 inches in the first

second. At the distance of the moon, the force of gravity (if it

diminishes in proportion to the square of the distance from the

earth's centre) will be found by the proportion

S9.9642
: 12

: : 192 : 0.0535 inch,

which agrees very nearly with the distance above computed.
The space through which the moon actually falls toward the

earth in one second is a little less than that computed from the

force of gravity at the earth's surface, because (as we shall see

hereafter) the action of the sun diminishes by a small quantity
the moon's gravity toward the earth.

253. Deductions from Kepler's laivs. By Kepler's first law, the

radius vector of each planet describes about the sun equal areas

in equal times; hence it follows (Art. 246) that each planet is

acted upon by a force which urges it continually toward the cen-

tre of the sun. We say, therefore, that the planets gravitate to-

ward the sun, and the force which urges each planet toward the

sun is called its gravity toward the sun. By Kepler's second law,

the planets describe ellipses, having the centre of the sun at one

of their foci
;
hence it follows (Art 249) that the force of gravity

of each planet toward the sun varies inversely as the square of its

distance from the sun's centre. By Kepler's third law, the squares
of the times of revolution of the different planets are as the cubes

of the mean distances from the sun
;
hence it follows (Art. 250)

that the planets are solicited by a force of gravitation toward the

sun, which varies from one planet to another inversely as the

square of their distance. It is, therefore, the same force, modified

only by distance from the sun, which causes all the planets to

gravitate toward him, and retains them in their orbits. This
force is conceived to be an attraction of the matter of the sun for

the matter of the planets, and is called the solar attraction. This
force extends infinitely in every direction, varying inversely as

the square of the distance.
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254. The planets endowed with an attractive force. The motions

of the satellites about their primary planets are also found to be

in conformity with Kepler's laws; hence we conclude that the

planets which have satellites are endowed with an attractive force,

which extends indefinitely in every direction, and varies inverse-

ly as the square of the distance. It is evident, also, that the sat-

ellites gravitate toward the sun in the same manner as their

planets, for their relative motions about their primaries are the

same as if the planets were at rest.

The planets which have no satellites are endowed with a sim-

ilar attractive force, as is proved by the disturbances which they
cause in the motion of the other planets.

255. The component particles of the sun and planets attract each

other. The force of attraction of one body for another arises from

the attraction of its component particles. A large planet may be

regarded as a collection of numerous smaller planets, and the at-

traction of the whole must be the result of the attraction of the

component parts. Thus the gravitation of the earth toward the

sun is the sum of the gravitation of its component particles, and

thus, also, the force of gravity of each of the planets is propor-
tional to the matter which it contains

;
that is, to its mass. More-

over, since the attraction of the planets varies inversely as the

square of the distance, the force of every particle must also vary

inversely as the square of the distance of the particles.

256. Theory of universal gravitation. It follows, then, as a nec-

essary consequence, from the general facts or laws discovered by

Kepler, that all bodies mutually attract each other, with forces

varying directly as their quantities of matter, and inversely as

the squares of their distances. This principle is called the law of

universal gravitation. It was first distinctly promulgated by Sir

Isaac Newton, and hence is frequently called Newton's Theory of

Universal Gravitation. If we represent the mass of the sun by

M, and the distance of a planet from the sun by E, then the at-

traction of the sun upon the planet will be represented by ^.

A similar formula will represent the attraction of a planet upon
its satellite.

This universal gravitation disturbs the motion of the planets
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in their orbits about the sun. If the earth were attracted only

by the sun, it would describe an exact ellipse ; but, since it is also

attracted by the other planets, it is continually drawn out of the

orbit in which it had previously been moving. The satellites

also, being disturbed in their motions about their planets by their

mutual attractions and by that of the sun, are continually drawn
out of the orbits in which they were previously moving.

257. The heavenly bodies all move in conic sections. It was de-

monstrated by Newton that if a body (a planet, for instance) is

impelled by a projectile force, and is continually attracted toward

the sun's centre by a force varying inversely as the square of the

distance, and no other forces act upon the body, the body will

move in one of the following curves a circle, an ellipse, a para-

bola, or an hyperbola ;
that is, it will move in one of the conic

sections. The form of the orbit will depend upon the direction

and intensity of the projectile force.

If we conceive F to be

the centre of an attractive

force, and a body at A to be

projected in a direction at

right angles to the line AF,
then there is a certain ve-

locity of projection which

would cause the body to

describe the circle ABC;
a greater velocity would

cause it to describe the el-

lipse ADE, or the more ec-

centric ellipse AGH; and
if the velocity of projection be

sufficient, the body will describe
the semi-parabola AKL. If the velocity of projection be still

greater, the body will describe an hyperbola. The curve can not
be a circle unless the body be projected in a direction perpendicu-
lar to AF, and, moreover, unless the velocity with which the

planet is projected is neither greater nor less than one particular
velocity, determined by the length ofFA and the mass of the cen-

.1 body. If it differs little from this particular velocity (either
reater or

less), the body will move in an ellipse; but if it is
much greater, the body will move in a parabola or an hyperbola.
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If the body be projected in a direction AB Fig. 72.

oblique to SA, and the velocity of projection is

small, the body will move in an ellipse ;
but if

the velocity is great, it may move in a parabola
or hyperbola, but not in a circle.

If a body describe a circle, the sun is in the

centre of the circle. If the body describe an el-

lipse, the sun is not in the centre of the ellipse,

but in one focus. If the body describe a para-

bola or an hyperbola, the sun is in the focus. The planets de-

scribe ellipses which differ little from circles. A few of the com-

ets describe very long ellipses ;
and nearly all the others that have

been observed are found to move in curves which can not be dis-

tinguished from parabolas. There is reason to think that two or

three comets which have been observed move in hyperbolas.

258. Motions ofprojectiles. The motions of projectiles are gov-
erned by the same laws as the motions of the planets. If a body
be projected in a horizontal direction from the top of a mountain,
it is deflected by the attraction of the earth from the rectilinear

path which it would otherwise have pursued, and made to de-

scribe a curve line which at length brings it to the earth's sur-

face; and the greater the velocity of projection, the farther it will

go before it reaches the earth's surface. We may therefore sup-

pose the velocity to be so increased that it shall pass entirely

round the earth without touching it.

Let BCD represent the sur-
Fi(I 73

face of the earth; AB, AC,
AD the curve lines which a

body would describe if project-

ed horizontally from the top of

a high mountain, with success-

ively greater and greater ve- H|

locities. Supposing there were

no air to offer resistance, and

the velocity were sufficiently

great, the body would pass en-

tirely round the earth, and re-

turn to the point from which

it was projected.
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259. Time of revolution near the earth's surface. By means of

Kepler's third law, we are able to compute the time required to

complete a revolution in such an orbit near the earth's surface.

We may regard such a body as a satellite revolving round the

earth's centre in an orbit whose radius is equal to the radius of

the earth, while the moon completes one revolution in 27.32 da}
rs

in an orbit whose radius is 59.96 times the radius of the earth.

If we put T to represent the periodic time of such a satellite, we
shall have the proportion

59.963 :1 3 ::27.32 2 :T2
;

from which we find T= 0.0588 day, or Ih. 24m. 35s.

If the velocity of projection were too small to carry it entirely

round the earth, and the impenetrability of the earth did not pre-

vent, it would describe an ellipse, of which the earth's centre

would occupy the lower focus, and it would return again to the

point from which it started. This conclusion is easily reconciled

with the doctrine of Mechanics, that the path of a projectile is a

parabola, for it is there assumed that gravity acts in parallel di-

rections, and that it is a constant accelerating force. These prin-

ciples are sensibly true for small distances, but they are not true

when great distances are considered.

Problem. How much faster than at present must the earth ro-

tate upon its axis, in order that bodies on its surface at the equa-
tor may lose all their gravity ? Ans. 17 times.

260. Why a planet at perihelion does not fall to the sun. Since

the sun's force of attraction is greatest when the distance is least,

it might seem that when a planet has reached its perihelion it

must inevitably fall to the sun. The planet, however, recedes

from the sun, partly on account of the increased velocity near

perihelion, and partly on account of the gradual change in its di-

rection. The curvature of any part of a planetary orbit depends
not solely upon the force of the sun's attraction, but also on the

velocity with which, the planet is moving. The greater the ve-

locity of the planet, the less will be the curvature of the orbit.

Suppose a planet to have passed the aphelion A with so small
a velocity that the sun's attraction bends the path very much,
and causes it immediately to begin to approach toward the sun;
the sun's attraction will increase its velocity as it moves through
B, C, and D

;
for when the planet is at B

;
the sun's attractive
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rig. 74 A f rce acts *n t^e Direction BS
; and, on ac-

count of the small inclination ofBC to BS, the

force acting in the direction of BS increases

the planet's velocity. Thus the planet's ve-

locity is continually increasing as the planet
moves through B, C, and D

;
and although,

on account of the planet's nearness, the sun's

attractive force is very much increased, and

tends therefore to make the orbit more curved,

yet the velocity is so much increased that the

orbit is no more curved at E than it was at A; and at perihelion

the velocity is so great that the planet begins immediately to re-

cede from the sun.

A similar course of reasoning will explain why, when the plan-

et reaches its greatest distance from the sun, where the sun's at-

traction is least, it does not altogether fly off from the sun. As
the planet passes through F, G, II, the sun's attraction, which is

always directed toward S, retards the planet in its orbit, and when
it has reached A its velocity is extremely small

;
and therefore,

although the sun's attraction at A is small, yet the deflection

which it produces in the planet's motion is such as to give its path
the same curvature as at E. Then the planet again approaches
the sun, and goes over the same orbit as before.

261. Could the rotary and orbital motions of the earth have been

caused by a single force ? It is possible that the rotary motion of

the earth, and its motion in its orbit about the sun, are both the

result of a single primitive impulse. If a sphere were to receive

an impulse in the direction of its centre of gravity, it would have

a progressive motion without any rotation upon an axis. But if

the impulse were given in any other direction, it would produce
also a rotary motion. It is possible to compute at what distance

from the centre of gravity an impulse must be given to produce
the actual progressive and rotary motions observed in a body. In

order to explain the motion of the earth in its orbit, and that of

its rotation upon an axis in 24 hours, the impulse must have been

given in a line passing 24 miles from the centre of the earth.
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262. PROBLEMS.

Prob. 1. The mean distance of the planet Hygeia from the sun

is 3.14937 (the distance of the earth being taken as unity) ;
re-

quired its periodic time ?

By Art. 250, a3
: a'

3
:: T2

: T/2
;

that is,
I 3

: 3.14937 3
: : 3G5.252

: T2
.

Ans. 2041.4 days.

Prob. 2. The periodic time of the planet Flora is 1193 days ;

required its mean distance from the sun? Ans. 2.2013.

Prob. 3. What would be the periodic time of a planet revolving

about the sun at a mean distance of ten million miles ?

Prob. 4. What would be the periodic time of a planet revolving
about the sun at a mean distance of one million miles ?

Prob. 5. Suppose there exists a planet revolving about the sun

at a mean distance of 5000 millions of miles, what must be its pe-

riodic time ?

Prob. 6. What would be the periodic time of a satellite revolv-

ing about the earth at a mean distance of 10,000 miles from the

earth's centre?

Prob. 7. Suppose the earth had a satellite making one revo-

lution in a year, what would be its mean distance from the

earth?

'263. The probkm of the three bodies. When there are only two
bodies that gravitate to one another with forces inversely as the

squares of their distances, they move in conic sections, and de-

scribe about their common centre of gravity equal areas in equal
times. But if there are three bodies, the action of any one on the

other two, changes the form of their orbits, so that the determina-

tion of their motions becomes a problem of great difficulty, distin-

guished by the name of the probkm of the three bodies.

The solution of this problem, in its utmost generality, has never
been effected. Under certain limitations, however, and such as

are quite consistent with the condition of the heavenly bodies, it

admits of being resolved. The most important of these limita-

tions is that the force which one of the bodies exerts upon the

other two is, either from the smallness of that body or its great

distance, very inconsiderable, in respect of the forces which these

two exert on one another.
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The force of this third body is called a disturbing force, and its

effects in changing the places of the other two bodies are called

the disturbances, or perturbations of the system.

Though the small disturbing forces may be more than one, or

though there be a great number of remote disturbing bodies, their

combined effect may be computed, and therefore the problem of

three bodies, under the conditions just stated, may be extended to

any number.

264. How the moon's elliptic motion is disturbed. The only body
in the solar system which produces a sensible disturbing effect

upon the moon is the sun
;
for although several of the planets

sometimes come within less distances of the earth, their masses

are too inconsiderable to produce any sensible disturbing effect

upon the moon's motion. The mass of the sun, on the contrary,

is so great, that, although the radius of the moon's orbit bears a

small ratio to the sun's distance, and although lines drawn from

the sun to any part of that orbit are nearly parallel, the differ-

ence between the forces exerted by the sun upon the moon and

earth is quite sensible.

265. Relative attractions of the sun and earth upon the moon. It

was shown, Art. 252, that the earth draws the moon from a tan-

gent 0.0534 inch in a second. If a similar calculation be made
in relation to the orbit of the earth, it will be found that the sun

draws the earth from a tangent 0.119 inch in a second. Also, the

average force which the sun exerts upon the moon must be the

same as that which it exerts upon the earth
;
that is, the sun ex-

erts upon the moon a force 2-g- times as great as the earth does.

The moon is therefore much more under the influence of the sun

than of the earth.

266. Mass of the sun compared with that of the earth. The force

which the sun exerts on the earth is 2-g- times greater than that

which the earth exerts on the rnoon. But the force of attraction

varies inversely as the square of the distance, and the distance of

the sun from the earth is about 400 times the distance of the

moon. Hence, if the sun were at the same distance as the moon,
his force of attraction would be the square of 400, or 160,000
times as great as it is now; that is, it would be 2-^x 160,000, or
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352,000 times as great as the earth's attraction, and, consequently,

must have 352,000 times as much matter.

The best determination of the sun's mass is considered to be

354,936.

267. How the sun's attraction acts as a disturbing force. If the

sun were at an infinite distance, the earth and moon would be at-

tracted equally and in parallel straight lines, and, in that case,

their relative motions would not be in the least disturbed. But

although the distance of the sun compared with that of the moon
is very great, it can not be considered infinite. The moon is al-

ternately nearer to the sun and farther from him than the earth,

and the straight line which joins her centre and that of the sun

forms with the terrestrial radius vector an angle which is contin-

ually varying. Thus the sun acts unequally and in different di-

rections on the earth and moon, and hence result inequalities in

her motion, which depend on her position in respect of the sun.

268. General effect of the sun's disturbing action. Let us suppose
that the projectile motions of the earth and moon are destroyed,
and that they are allowed to fall freely toward the sun. If the

moon was in conjunction with the sun, it would be more attract-

ed than the earth, and fall with greater velocity toward the sun,

so that the distance of the moon from the earth would be increased

in the fall. If the moon was in opposition, she would be less at-

tracted than the earth by the sun, and would fall with a less ve-

locity toward the sun than the earth, and the moon would be left

behind by the earth, so that the distance of the moon from the

earth would be increased in this case also. If the moon was in

one of the quarters, then the earth and moon, being both attracted

toward the centre of the sun, would approach the sun, and at the

same time would necessarily approach each other, so that their

distance from each other would in this case be diminished. Now
whenever the action of the sun would increase their distance if

they were allowed to fall toward the sun, it produces the same
effect as if their gravity to each other was diminished

;
and when-

ever the action of the sun would diminish their distance, their

gravity to each other is increased. Hence we conclude that the

sun's action increases the gravity of the moon to the earth at the quad-
ratures, and diminishes it at the syzygies.
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Fig. 75.

269, How to estimate the amount of the sun's disturbing force.

We may estimate the amount of tins disturbing force in the fol-

lowing manner :

Let ABCD represent the orbit of the moon,
with the earth at E, and let the sun be at S
and the moon at M. Let the line SE be taken

|B to represent the force with which the sun at-

tracts the earth
;
then we may determine the

magnitude of the force with which the sun

acts on the moon at M by the proportion
SE3

SM2 :SE2 ::SE:

duced

JSM2
In the line MS, pro-

if necessary, take MG=-T-TT^ and it
OAL

will represent the force with which the sun

attracts the moon. We may suppose the

force MG to result from the combined action

of two forces, MF and MH (MG being the

diagonal of the parallelogram MFGH), of

which one, MF, is equal and parallel to ES.

Now if the earth and moon were only acted

upon by the equal and parallel forces ES and
n

MF, their relative motions would not be af-

fected. Therefore it is only MH which dis-

turbs this relative motion
;
that is, MH rep-

resents the quantity and direction of this dis-

turbing force. This force, MH, may be resolved into two forces,

MK, ML, the first being in the direction of the radius vector ME,
and the other having the direction of a tangent to the orbit. The
force MK augments or diminishes the moon's gravitation to the

earth
;
while the force ML affects the moon's angular motion

round the earth, sometimes accelerating and sometimes retard-

ing it.

It is evident that the tangential force LM retards the moon's

motion when going from A to B. If we construct a similar fig-

ure for each of the other quadrants, we shall find that the tangen-
tial force accelerates the moon's motion from D to A, and also from

B to C, but retards the moon's motion when going from C to D.

This force becomes zero at each of the points A, B, C, and D, and

has its maximum value near the octants.
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"When the moon is in conjunction, the disturbing force of the

sun is wholly employed in drawing the moon away from the

earth
;
that is, in diminishing the moon's gravitation to the earth.

When the moon is in opposition, the force with which the sun

draws the earth is greater than that with which it draws the moon,

so that the effect of the sun's attraction is to increase the distance

of the moon from the earth
;
that is, it is the same as if the sun's

force drew the moon away from the earth, or diminished the

moon's gravitation to the earth.

When the moon is in quadrature, the tangential force disap-

pears, and the disturbing force is wholly employed in augmenting
the moon's gravitation to the earth. The sun attracts the earth

and moon equally, but not in parallel lines. If we suppose the

projectile motions of the earth and moon to be destroyed, and

that they are allowed to fall freely toward the sun, the earth and

moon, both moving toward the centre of the sun, would approach
each other, and in one second (their distance from the sun being
400 times the radius of the moon's orbit) their distance from

each other would be diminished by T^th part of the space fallen

through. Hence, if ES represents the force of the moon's gravi-

tation to the sun, then BE will represent the augmentation of the

moon's gravitation to the earth in quadratures.

-270. Numerical estimate of the suns disturbing force. The ratio

of the line ME! to ES may be computed by Trigonometry when
we know the distance of the sun and moon from the earth, and

also the angular distance of the moon from the sun. Also the

disturbing force of the sun upon the moon may be compared with

the earth's attraction upon the moon by the following propor-
tions:

1st. Disturbing force : sun's attraction on earth : : Mil : ES
;

2d. Sun's attraction on earth : earth's attr'n on sun : : 354,936 : 1
;

3d. Earth's attraction on sun : earth's attraction on moon : :

EM 2
: ES2

.

Compounding these three proportions, we have

Disturbing force : earth's attraction on moon :: 354,936 x Mil
xEM2 :ES3

.

Since the values of Mil, EM, and ES are known, we can com-

pute the ratio of the disturbing force to the earth's attraction.

Ex. 1. Compare the disturbing force of the sun upon the moor



LUNAR IRREGULARITIES. 147

with the earth's attraction upon the moon at the time of conjunc-

tion, assuming the distance of the sun to be 399.32 times the dis-

tance of the moon, and the sun's mass 354,936 times that of the

earth.

rig. T6. Sun's att. on moon : sun's att. on-? earth : : SE2
: SM 2

: : 1.00502 : 1.

Hence, Disturbing force : sun's attraction on earth : : 0.00502 : 1.

And, Disturbing force : earth's attraction on moon :: 354,936 x
0.00502 : 399.322

: : 1 : 89
;

that is, by the disturbing action of the sun at conjunction, the moon's

gravity to the earth is diminished by ^th part.

Ex. 2. Compare the disturbing force of the sun upon the moon
with the earth's attraction upon the moon at the time of opposi-
tion.

Fig. 77. Sun's att. on moon : sun's att. on

::SE2 :SMa
: :.99501:1.

Hence, Disturbing force : sun's attraction on earth : : 0.00499 : 1.

And, Disturbing force : earth's attraction on moon :: 354,936 x
0.00499 : 399.322

: : 1 : 90
;

that is, by the disturbing action of the sun at opposition, the moon's

gravity to the earth is diminished by -g^th part.

Ex. 3. Compare the disturbing force of the sun upon the moon
with the earth's attraction upon the moon at the time of quadra-
ture.

Disturbing force : sun's attraction on earth : : 1 : 399,32. Art. 269.

Hence, Disturbing force : earth's attraction on moon : : 354,936 :

399.323
:: 1:179;

that is, by the disturbing action of the sun at quadrature, the moon's

gravity to the earth is increased by i^th part.

Thus we see that at the quadratures, the gravity of the moon
to the earth is increased by about the 179th part, while at the op-

position and conjunction it is diminished by about twice this quan-

tity ; and, by a computation extending to every part of the orbit,

it is found that the average effect is to diminish the moon's gravity by

^th part.

In consequence of this diminution of her gravity, the moon de-

scribes her orbit at a greater distance from the earth, with a less

angular velocity, and in a longer time, than if she were urged to

the earth by her gravity alone.
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271. The equation of the centre depends upon the eccentricity of

the orbit The eccentricity of the moon's orbit was stated in

Art. 208 to be -j^th, and the greatest value of the equation of the

centre is 6 18' 17", being more than three times that of the sun.

272. Evedion. After the equation of the centre, the most im-

portant inequality affecting the motion of the moon is that termed

the Evection, the discovery of which we owe to the famous astron-

omer Hipparchus, in the second century before the Christian era.

The evection is an inequality in the equation of the centre de-

pending on the position of the major axis of the moon's orbit, in

respect of the line drawn from the earth to the sun.

273. Cause of evection. Any cause which at the perigee should

have the effect to increase the moon's gravitation toward the

earth beyond its mean, and at the apogee to diminish the moon's

gravitation toward the earth, would augment the difference be-

tween the gravitation at the perigee and apogee, and, consequent-

ly, increase the eccentricity of the orbit. But any cause which at

the perigee should have the effect to diminish the moon's gravi-
tation toward the earth beyond its mean, and at the apogee to in-

crease it, would diminish the difference between the two, and,

consequently, diminish the eccentricity.

rig. TS. S
B Let E represent the earth

T

ABCD the moon's orbit, of

which A is the perigee and

C the apogee, and let SS'

S"S'" be the apparent orbit

of the sun. If the sun be at

S, so that the major axis of

the moon's orbit is directed

to the sun, the distance of

the moon at A from the

earth is less than if it moved
in a circle, and the sun's dis-

turbing force, computed as

in Ex. 1, Art 270, will be
found to be less than -g^th of the moon's gravity. So, also, the
distance of the moon from the earth at C is greater than if it

moved in a circle, and the disturbing force computed, as in Ex. 2,
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Art. 270, will be found to be greater than ^th part of the moon's

gravity ;
that is, when the transverse axis of the moon's orbit is

directed to the sun, the moon's gravity to the earth when at peri-

gee is diminished less than the mean, and at apogee is diminished

more than the mean. Hence the moon, when at perigee, is drawn

away from the earth by less than the mean quantity, and when
at apogee, is drawn away from the earth by more than the mean

quantity. Thus the inequality between the two distances of the

moon from the earth is increased; that is, the eccentricity of the

moon's orbit is increased.

But if the sun be at S' and the moon at A, the sun's disturbing

force, computed as in Ex. 3, Art. 270, will be found to be less than

p^th part of the moon's gravity ;
but if the moon be at C, and

the sun at S', the disturbing force of the sun will be found to be

greater than -rf^th part of the moon's gravity ;
that is, when the

line of the apsides is in quadrature, the gravitation at the apogee
is most augmented, and that at perigee is least augmented. Hence
the effect of the sun's action is to diminish the inequality between

the two distances ofthe moon from the earth at these two points ;

that is, to diminish the eccentricity of the orbit. Thus we find, in

general, that the moon's orbit is most eccentric when the line of the

apsides is in syzygy, and is least eccentric when the line of the apsides

is in quadrature. The greatest value of evection is 1 16' 27
//

.

274. Variation. Another large inequality in the moon's mo-

tions is called the Variation. By comparing the moon's observed

place with the place computed from the mean motion, the equa-
tion of the centre, and the evection, Tycho Brahe,in the sixteenth

century, discovered that the two places did not generally agree.

They agreed only at the syzygies and quadratures, and varied

most in the octants, where the inequality amounted to 39' 30".

275. Cause of variation. This inequality is occasioned by that

part of the sun's disturbing force which acts in the direction of a

tangent to the moon's orbit, Art. 269. This force is nothing at the

syzygies and quadratures, and is greatest near the octants. It ac-

celerates the moon's motion in going from quadrature to conjunc-
tion

;
and when the moon is past conjunction, the tangential force

changes its direction and retards the moon's motion.
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276. The annual equation is an inequality in the moon's motion

arising from the variation of the sun's distance from the earth.

When the earth is at perihelion, the sun's disturbing force is

greater than its average value
;
the moon's gravity to the earth

is diminished more than usual
;
and its velocity is therefore slow-

er than the mean. For the same reason, at aphelion the moon's

velocity is greater than the mean. The period of this inequality

is one year, and its maximum effect upon the moon's longitude

amounts to 11' 9".

277. Other inequalities in Hie moon's motion. These three ine-

qualities, evection, variation, and annual equation, are the largest

of the inequalities in the moon's motion. The other inequalities

are more minute; but, in order to represent the moon's place with

the greatest possible accuracy, it is necessary to take into account

a large number of corrections.

The moon's place for every hour of the year is computed sev-

eral years beforehand, and published in the Nautical Almanac.

These places are now computed from Tables published by Pro-

fessor Hansen in 1858. The average difference between the ob-

served places of the moon and the places computed from these

Tables does not exceed 6", and only once or twice in a year does

the difference amount to so large a quantity as 12".

278. Cause of the retrograde motion of the moon's nodes. The

plane of the moon's orbit is inclined to the ecliptic about 5; that

is, in half of her revolution she is on the north side of the eclip-

tic, and in half is on the south side of the ecliptic. The sun is

seldom in the plane of the moon's orbit, and his action generally
has a tendescy to draw the rnoon out of the plane in which she
is moving. This oblique force may be resolved into two other

forces one lying in the plane of the ecliptic, and the other per-

pendicular to it. Let ENN" represent the ecliptic, and AN a

Fig. 79. A portion of the moon's

orbit. Let the moon
be at A, and approach-

ing the descending
node N. The sun be-

ing situated in the

plane EN", his attrac-
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tion tends to draw the moon toward that plane. Let that part

of the sun's disturbing force which is perpendicular to the plane

EN be represented by AB, and suppose that in the time that the

perpendicular force would cause it to describe AB, the moon, if

undisturbed, would have advanced from A to D. By the com-

bined action of these two forces, the moon will describe the diag-

onal AC, and cross the ecliptic in the point N'. Thus the node

has shifted from N to N' in a direction contrary to that of the

moon's motion, and the inclination of the orbit to the ecliptic has

increased. After the moon has crossed the ecliptic, the sun's dis-

turbing action tends to draw the moon northward toward the

ecliptic. Suppose the moon to be at F, and let that part of the

sun's disturbing force which is perpendicular to the ecliptic be

represented by FK, while FG represents the moon's velocity in

her orbit. The resultant of these two forces will be a motion in

the diagonal FII, as if the moon had come, not from N', but from

N", a point still farther to the westward. Thus the node has

traveled farther westward, but the inclination of the orbit to the

plane of the ecliptic has diminished. Thus it appears that both

in approaching the node, and in receding from it, the node shifts its

place in a direction contrary to that of the moon's motion; but the

inclination of the moon's orbit increases while the moon approaches
the node, and diminishes while the moon is receding from it.

When the line of the nodes of the moon's orbit passes through
the sun, there is no disturbing force tending to draw the moon
out of the plane of its orbit

;
but in every other position the line

of the nodes is constantly regressing, making a complete revolu-

tion in about 19 years. See Art. 240. The inclination of the

plane of the orbit to the ecliptic increases and diminishes al-

ternately. This variation is, however, confined within very nar-

row limits, so that there is no permanent change in the inclina-

tion of the orbit.

279. Cause of the progression of the line of the apsides. The ap-

sides of the moon's orbit are distant from each other more than

180. This is caused by the disturbing action of the sun, which

tends to diminish the moon's gravity to the earth. If the moon
was only acted upon by the -earth's attraction, she would describe

an ellipse, and her angular motion from perigee to apogee would
be just 180

;
but when the effect of the sun's action is to dimin-
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ish the moon's gravity, she will continually recede from the ellipse

that would otherwise be described; her path will be less curved,

and she must move through a greater distance before the radius

vector intersects the path at right angles. She must therefore

move through a greater angular distance than 180 in going from

perigee to apogee, and, consequently, the apsides must advance.

On the contrary, when the moon's gravity is increased by the

sun's action, her path will fall within the ellipse which she would

otherwise describe
;

its curvature will be increased, and the dis-

tance through which she must move before the radius vector in-

tersects her path at right angles will be less than 180. The ap-

sides will therefore move backward. Now it has been shown

that the sun's action alternately increases and diminishes the

moon's gravity to the earth. The motion of the apsides will

therefore be alternately direct and retrograde. But as the dimi-

nution of gravity has place during a much longer part of the

moon's revolution, and is also greater than the increase, the di-

rect motion will exceed the retrograde ;
and in one revolution of

the moon, the apsides have a progressive motion of about 3, mak-

ing a complete revolution in about nine years. See Art. 239.

280. Periodical and secular inequalities. The perturbations in

the elliptic movements of the planets and their satellites may be

divided into two distinct classes. Those of the first class depend

simply on the configurations of the planets, and complete the cycle
of their values upon each successive return of the same configu-
ration. These are called periodic inequalities. Their periods, gen-

erally speaking, are not long ;
and their general effect is slightly

to accelerate or retard a planet in its orbit. The perturbations
of the second class depend on the configuration of the nodes and

perihelia. They vary with extreme slowness, requiring centu-

ries to complete the cycle of their values, and they are hence de-

nominated secular inequalities. Laplace has indeed demonstrated
that the last-mentioned inequalities are also periodic, but the pe-
riods are much longer than those of the other inequalities, and
are independent of the mutual configurations of the planets.

281. Secular acceleration of the moon's mean motion. The mean
motion of the moon exhibits a secular inequality which has be-

come very celebrated. By comparing the results of recent ob-
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servations with the Chaldean observations of eclipses at Babylon
in the years 719 and 720 before the Christian era, Dr. Halley dis-

covered that the periodic time of the moon is now sensibly short-

er than at the time of the Chaldean eclipses. The mean motion

of the moon increases at the rate of more than 10" in one hund-

red years. If this acceleration of her motion, and the consequent
diminution of her distance, were perpetually to continue, it would

follow that she would eventually be precipitated to the earth.

But Laplace has shown that this acceleration of the moon is occa-

sioned by the change in the eccentricity of the earth's orbit. It

has been stated, Art. 113, that the eccentricity of the earth's orbit

has been diminishing from the time of the earliest observations.

The mean action of the sun upon the moon tends to diminish

the moon's gravity to the earth, and thereby causes a diminution

of her angular velocity. This diminution being once supposed
to occur, the angular velocity would afterward remain constant,

provided the mean solar action always retained the same value.

This, however, is not the case, for it depends, to a certain extent,

on the eccentricity of the earth's orbit. Now the eccentricity of

the earth's orbit has been continually diminishing from the date

of the earliest recorded observations down to the present time
;

hence the sun's mean action must also have been diminishing,

and, consequently, the moon's mean motion must have been con-

tinually increasing. This acceleration will continue as long as

the earth's orbit is approaching toward a circular form
;
but as

soon as the eccentricity begins to increase, the sun's mean action

will increase, and the acceleration of the moon's mean motion will

be converted into a retardation.

CHAPTER X.

ECLIPSES OF THE MOON.

282. Cause of eclipses. An eclipse of the sun is caused by the

moon passing between the sun and the earth. It can therefore

only occur when the moon is in conjunction with the sun
;
that

is, at the time of new moon. An eclipse of the moon is caused

by the earth passing between the sun and moon. It can there-

fore only occur when the moon is in opposition ;
that is, at the

time of full moon.
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283. Why ecli})ses
do not occur every month. If the moon's orbit

coincided with the plane of the ecliptic, there would be an eclipse

of the sun at every new moon, since the moon would pass direct-

ly between the sun and earth
;
and there would be an eclipse of

the moon at every full moon, since the earth would be directly

between the sun and motm. But since the moon's orbit is in-

clined to the ecliptic about 5, an eclipse can only occur when the

moon, at the time of new or full, is at or near one of its nodes.

At other times, the moon is too far north or south of the ecliptic

to cause an eclipse of the sun, or to be itself eclipsed.

284. Form of the earth's shadow. Since the magnitude of the

sun is far greater than that of the earth, and both bodies are of a

globular form, the earth must cast a conical shadow in a direction

opposite to that of the sun. Let AB represent the sun, and CD

Fig. 80.

the earth, and let the tangent lines AC, BD be drawn, and pro-
duced to meet in F. Then CFD will represent a section of the
earth's shadow, and EF will be its axis. If the triangle AFS be

supposed to revolve round the axis SF, the tangent CF will de-

scribe the convex surface of a cone, within the whole of which
the light of the sun must be intercepted by the earth.

285. The semi-angle of the cone of the earth's shadow is equal to the

sun's apparent semi-diameter, minus his horizontal parallax.
In Fig. 80 the semi-angle of the cone of the earth's shadow is

'C or EFD. Now SEB=EFB+EBF ;
that is, EFB=SEB-

EBD
;
or half the angle of the cone of the earth's shadow is equal

to the sun's apparent semi-diameter, minus his horizontal paral-
lax. Putting s for the sun's semi-diameter, and p for his horizon-
tal

parallax, we have the semi-angle of the earth's shadow, EFC
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286. The length of the earth's shadow varies according to the dis-

tance of the sun from the earth; its mean length being 856,200 miles,

or more than three times the distance of the moonfrom the earth.

In the right-angled triangle EFC, right-angled at C,

.

sin. Lt C sin. (s p)
The mean value of the sun's apparent semi-diameter is 16' 1".8,

and the sun's horizontal parallax is 8". 6
;
hence s p= 15' 53' '.2.

Also, the mean radius of the earth =3956.7 miles. Hence the

average length of the earth's shadow = -. .,,, '.
, ,=856,200

sin. lo 08 .2

miles.

Since the mean distance of the moon from the earth is only

238,880 miles, the shadow extends to a distance more than three

times that of the moon.

287. The average breadth of the earth's shadow, at ti^e distance of
Hie moon, is almost three times the moon's diameter.

Let M'M" represent a portion of the moon's orbit. The appa-
rent semi-diameter of the earth's shadow at the distance of the

moon is the angle MEH. But EHD=FEH+HFE. HenceMEH
=EHD HFE. ButEHD= the moon's horizontal parallax; and

HFE = the sun's semi-diameter minus his horizontal parallax

(=s p); therefore half the angle subtended by the section of

the shadow is equal to the sum of the parallaxes of the sun and

moon, minus the sun's semi-diameter. If we represent the moon's

horizontal parallax by p', we shall have

MEKp+p's.
The mean value of p' is 57' 2".3, and sp= l5

r

53".2; hence

p+p' 5=41' 9".l. The mean value of the moon's apparent
semi-diameter is 15' 39".9. Hence the diameter of the shadow is

almost three times the moon's diameter, and therefore the moon

may be totally eclipsed for as long a time as she takes to describe

about twice her own diameter. The eclipse will begin when the

moon's disc at M' touches the earth's shadow, and the eclipse will

end when the moon's disc touches the earth's shadow at M".

288. Lunar ecliptic limits. There is a certain distance of the

moon's node from the centre of the earth's shadow beyond which

a lunar eclipse is impossible, and a certain less distance within
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which an eclipse is inevitable. These distances are called the lunai

ecliptic limits. The first is called the major limit, and the second

the minor limit

Let NE repre
"

sent the ecliptic,

NM the moon's

orbit, and N the

moon's ascending
node. Let EA be

the semi-diameter of the earth's shadow, and MA the semi-diam-

eter of the moon. When the line ME, joining the centres of the

moon and shadow, becomes equal to the sum of the semi-diam-

eters, the moon will touch the earth's shadow
;
and if ME be less

than this limit, the moon will enter the shadow, and be partially

or totally eclipsed. The line NE represents that distance of the

moon's node from the centre of the earth's shadow beyond which

there can be no eclipse.

289. To compute the values of the ecliptic limits. We may regard

EMN as a spherical triangle, right-angled at M, in which EM rep-

resents the sum of the radii of the moon and of the earth's shad-

ow, and N is the inclination of the moon's orbit to the ecliptic-

Now, by Napier's rule,

R sin. EM=sin. EN sin. N
;
or sin. EN= sin '

.

sin. N
Since EM and N are both variable, the ecliptic limit is varia-

ble. To obtain the distance beyond which a lunar eclipse is im-

possible, we must employ the greatest possible value of EM, and

the least possible value of N. To obtain the distance within

which an eclipse is inevitable, we must employ the least possible

value of EM, and the greatest possible value of N. The greatest

possible value of EM is 62' 38", and the least inclination of the

moon's orbit to the ecliptic is 5, from which we obtain the major
limit of lunar eclipses, 12 4'. The least possible value of EM is

52' 20", and the greatest possible inclination of the moon's orbit

to the ecliptic is 5 17', from which we obtain the minor limit of

lunar eclipses, 9 30'.

If, then, at the time of opposition, the moon's node is distant

from the centre of the earth's shadow less than 9 30', or if the

sun be distant from the opposite node of the moon less than 9 30',
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there will certainly be an eclipse of the moon
;
but if the sun be

distant from the node of the moon's orbit more than 12 4', there

can not be an eclipse. When the distance falls between these

limits, it will be necessary to make a more minute calculation in

order to determine whether there will or will not be an eclipse.

290. Different lands of lunar eclipses. When the moon just

touches the earth's shadow, but passes by it without entering it,

the circumstance is called an appulse. When a part, but not the

whole of the moon enters the shadow, the eclipse is called a par-
tial eclipse ;

when the moon enters entirely into the shadow, it is

called a total eclipse; and if the moon's centre should pass through
the centre of the shadow, it would be called a central eclipse. It

is probable, however, that a strictly central eclipse of the moon
has never occurred.

291. The earth's penumbra. Long before the moon enters the

cone of the earth's shadow, the earth begins to intercept from it a

portion of the sun's light, so as to render the illumination of its

surface sensibly more faint. This partial shadow is called the

earth's penumbra. Its limits are determined by the tangent lines

AD, BC produced. Throughout the space included between the

Fig. 82.

lines CK and DL, the light of the sun is more or less obstructed

by the earth. If a spectator were situated at L, he would see the

entire disc of the sun
;
but between L and the line DF, he would

see only a portion of the sun's surface, and the portion of the sun

which was hidden would increase until he reached the line DF,

beyond which the sun would be entirely hidden from view.

292. The semi-angle of the earth's penumbra is equal to the sun's

apparent semi-diameter, plus his horizontal parallax.

The an-le KNF=BNS=BEN+ NBE. But BEN is the sun's
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apparent semi-diameter, and NBE is the sun's horizontal parallax.

Hence the semi-angle of the penumbra is represented by s+p.

293. The apparent semi-diameter of a section of the penumbra, at

the moon's distance is equal to Hie sum of the parallaxes of the sun

and moon, plus the sun's semi-diameter.

The angle MEra=ENra+E7N.
But ENm=s+p, Art. 292.

And EmN=the moon's horizonal parallax=p
r

.

Hence M.Em=p+p'+s, which equals the apparent semi-diam-

eter of the shadow, plus the sun's diameter.

294. Effect of the earth's atmosphere. In obtaining the above

expression for the dimensions of the earth's shadow, the shadow

is assumed to be limited by those rays of the sun which are tan-

gents to the sun and earth. It is, however, found that the ob-

served duration of an eclipse always exceeds the duration com-

puted on this hypothesis. This fact is accounted for in part by

supposing that most of those rays which pass near the surface of

the earth are absorbed by the lower strata of the atmosphere; but

we must also admit that those rays of the sun which enter the at-

mosphere, and are so far from the surface as not to be absorbed,
are refracted toward the axis of the shadow, and are thus spread
over the entire extent of the geometrical shadow, thereby dimin-

ishing the darkness, but increasing the diameter of the shadow,

and, consequently, the duration of the eclipse.

In consequence of the gradual diminution of the moon's light

as it enters the penumbra, it is difficult to determine with accu-

racy the instant when the moon enters the dark shadow
;
and as-

tronomers have differed as to the amount of correction that should

be made for the effect of the earth's atmosphere. It is generally
found necessary, however, to increase the computed diameter of

the shadow by about ^th part.

295. Moon visible when entirely immersed in the earth's shadow.

When the moon is totally immersed in the earth's shadow, she

does not, except on some rare occasions, become in visible, but as-

sumes a dull reddish hue, somewhat of the color of tarnished cop-

per. This arises from the refraction of the sun's rays in passing

through the earth's atmosphere, as explained in the preceding
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Article. Those rays from the sun which enter the atmosphere,
and are so far from the surface as not to be absorbed, are bent to*

ward the axis of the shadow, and fall upon the moon, causing suf-

ficient illumination to render the disc distinctly visible.

296. Computation of lunar eclipses. By the solar tables we may
ascertain the apparent position of the centre of the sun from hour

to hour, and hence we may learn the position of the centre of the

earth's shadow. From the lunar tables we ascertain, in the same

manner, the position of the moon's centre from hour to hour. The

eclipse will begin when the distance between the centre of the

moon and that of the shadow is equal to the sum of the apparent
semi-diameters of the moon's disc and the shadow

;
the middle of

the eclipse will occur when this distance is least
;
and the eclipse

will end when the distance between the centres is again equal to

the sum of the apparent semi-diameters. The Nautical Almanac
for each year furnishes the places of the sun for every day of the

year, as computed from the solar tables, and the places of the

moon are given for every hour of the year. With this assist-

ance, it is easy to compute the times of beginning and end of an

eclipse.

297. Construction of the diagram. First find the time of oppo*

sition, or the time of full moon. For this time compute the dec*

lination, horizontal parallax, and semi-diameter both of the sun

and moon
;

also the hourly motion of the moon from the sun

both in right ascension and declination.

Let C represent the

centre of the earth's

shadow. Draw the line

ACB parallel to the

equator, and DCM per-

pendicular to it. Select

a convenient scale of

equal parts, and from it

take CG-, equal to the

moon's declination, mi-

nus the declination of

the centre of the shad-

ow, and set it on CD
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from C to G, above the line AB, if the centre of the moon is north

of the centre of the shadow, but below if south. Take CO, equal

to the hourly motion of the moon from the sun in right ascension,

reduced to the arc of a great circle, and set it on the line CB, to

the right of C. Take CP, equal to the moon's hourly motion from

the sun in declination, and set it on the line CD from C to P,

above the line AB, if the moon is moving northward with respect

to the shadow, but below if moving southward. Join the points

O and P. The line OP will represent the hourly motion of the

moon from the sun
;
and parallel to it, through G, draw NGL,

which will represent the relative orbit of the moon, the earth's

shadow being supposed stationary. On this line are to be marked

the places of the moon before and after opposition, by means of

the hourly motion OP, in such a manner that the moment of op-

position may fall exactly upon the point G.

298. To determine the beginning and end of the eclipse. The semi-

diameter of the earth's shadow is equal to the horizontal parallax
of the moon, plus that of the sun, minus the sun's semi-diameter,
which result must be increased by -g^th part, on account of the

earth's atmosphere. With this radius, describe the circle ADB
about the centre C. Add the moon's semi-diameter to the radius

CB, and, with this sum for a radius, describe about the centre C a

circle, which, if there be an eclipse, will cut NL in two points, E
and H, representing respectively the places of the moon's centre

at the beginning and end of the eclipse. Draw the line CKR per-

pendicular to LN, and cutting it in K. The hours and minutes
marked on the line LN, at the points E, K, and H, will represent

respectively the times of the beginning of the eclipse, middle of
the eclipse, and end of the eclipse. If the circle does not inter-

sect NL, there will be no eclipse. With a radius equal to the
moon's semi-diameter, describe a circle about each of the centres

E, H, and K. If the eclipse is total, the whole of the circle about
K will fall within ARB

;
but if part of the circle falls without

ARB, the eclipse will be partial. In either case, the magnitude
of the eclipse will be represented by the ratio of the obscured part
HI to the moon's diameter. When the eclipse is total, the begin-
ning and end of total darkness may be found by taking a radius

equal to CB, diminished by the moon's semi-diameter, and describ-

ing with it round the centre C a circle cutting LN in two points,
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representing respectively the places of the moon's centre at the

beginning and end of total darkness.

Example 1.
'

299. Required the times of beginning, end, etc., of the eclipse
of the moon, March 30, 1866, at Greenwich.

By the Nautical Almanac, the Greenwich mean time of oppo-
sition in right ascension is, March 30, 16h. 39m. 18.9s. Corre-

sponding to this time, the Nautical Almanac furnishes the fol-

lowing elements :

Declination of the moon S. 4C

Declination of the earth's shadow - -

Moon's equatorial horizontal parallax
-

Sun's horizontal parallax
Moon's semi-diameter

Sun's semi-diameter

Moon's hourly motion in right ascension

Sun's hourly motion in right ascension

Hourly motion of moon in declination

Hourly motion of shadow in declination

S.4

12' 55".5

3 42 .3

54 28 .1

14

16

28

2

52 .0

2 .2

48 .0

16 .4

14 .1

58 .1

The figure of the earth being spheroidal, that of the shadow
will deviate a little from a circle, so that instead of the equatorial
horizontal parallax, we should employ the horizontal parallax be-

longing to the mean latitude of 45. The reduction for latitude,

Fig. 84.
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by Table VIII.
,
is 5".4, so that the moon's reduced parallax is

54' 22".7. Then, to obtain CB, the semi-diameter of the earth's

shadow, we have 54' 22".7+8".6-16' 2".2, which is equal to 38'

29".l. Increasing this by ^ib. part of itself, or 38".5, we have

39' 7".6=CB ;
to which adding the moon's semi-diameter, we ob-

tain CE=53' 59".6. From the centre C, with a radius CB, taken

from a convenient scale of equal parts, describe the circle ARB,

representing the earth's shadow. Draw the line ACB to repre-

sent a parallel to the equator, and make CG perpendicular to it,

equal to 9' 13".2, which is the moon's declination, minus the dec-

lination of the centre of the shadow
;
the point G being taken

below C, because the centre of the moon is south of the centre

of the shadow.

The hourly motion of the moon from the sun in right ascension

is 26' 31".6, which must be reduced to the arc of a great circle by

multiplying it by the cosine of the moon's declination, 4 12' 55",

Art. 152, thus : 26' 31".6= 1591".6= 3.201834

cos.dec.412'55' / =9.998824

Reduced hourly motion= 1587".3= 3.200658

Make CO = 1587".3, and CP, perpendicular to it, equal to 8'

16".0, which is the hourly motion of the moon from the shadow

in declination, the point P being placed below C, because the
4

moon was moving southward with respect to the shadow. Join

OP
;
and parallel to it, through G, draw the line NGL, which rep-

resents the path of the moon with respect to the shadow. On
NL let fall the perpendicular CK. Now at 16h. 39m. 18.9s. the

moon's centre was at G. To find X, the place of the moon's cen-

tre at 16h., we must institute the proportion
60m. : 39m. 18.9s. ::OP:GX;

which distance, set on the line GN", to the right of G, reaches to

the point X, where the hour, 16h. preceding the full moon, is to

be marked. Take the line OP, and lay it from 16h., toward the

right hand, to 15h., and successively toward the left to 17h., 18h.,
etc. Subdivide these lines into 60 equal parts, representing min-

utes, if the scale will permit; and the times corresponding to the

points E, K, and H will represent respectively the beginning of

the eclipse, 14h. 38m.
;
the middle of the eclipse, 16h. 33m.

;
and

the end of the eclipse, 18h. 28m.
If the results obtained by this method are not thought to be

sufficiently accurate, we may institute a rigorous computation.
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Computation of the Eclipse.

300. The phases of the eclipse may be accurately computed in

the following manner :

In the right-angled triangle OCP, we have given C0= 1587".3,

and CP=496".0, to find OP and the angle CPO, thus:

CP : K : : CO : tang. CPO.
CO =1587.3= 3.200658

CP= 496.0=2.695482

CPO= 72 38' 49" tang.= 0.505176

Also, sin. CPO :K:: CO: OP.

C0=3.200658
sin.CPO= 9.979769

OP=1663".0= 3.220889

301. Beginning, middle, and end of the eclipse. The middle of

the eclipse is found by means of the triangle CGK, which is simi-

lar to CPO, because EG and OP are parallel, and CK is perpen-
dicular to PO. Hence the angle CGK= 72 38' 49"

;
and CG, the

difference of declination between the moon and the centre of the

shadow= 9' 13'
/.2=553 //

.2. To find CK and KG, we have the

proportions
E : CG : : sin. CGK : CK : : cos. CGK : GK.

sin. CGK =9.979769 cos. CGK=9.474593
CG=2.742882 CG=2.742882

CK=528".0=2.722651 GK=165".0= 2.217475

Then, to find the time of describing GK, we say,

As OP (1663".0) is to GK (165".0), so is 1 hour to the time

(357.2s.), 5m. 57.2s., between the middle of the eclipse and the

time of opposition in right ascension, 16h. 39m. 18.9s., which gives
the time of middle of the eclipse 16h. 33m. 21.7s.

Now, in the triangle CKE, we have the hypothenuse CE=53'

59".6=3239".6, and CK=528".0, to find KE, thus:

KE=N/CE2-CK2=v/CE+C^xCE-CK=3196".3.

To find the time of describing KE, we form the proportion
1663".0 : 3196".3 :: 3600s. : 6919.3s. = lh. 55m. 19.3s.

;

which, subtracted from 16h. 33m. 21.7s., the time of middle, gives
14h. 38m. 2.4s. for the beginning of the eclipse ; and, added to the

time of middle, gives for the end of the eclipse 18h. 28m. 41.0s.
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302. Magnitude of the eclipse. Subtracting CK, 8' 48".0, from

CR, 39' 7".6, we have KR, 30' 19".6
;
to which adding KI, 14'

52".0, we obtain El, 45' 11".6. Dividing this by the moon's di-

ameter, 29' 44".0, we obtain the magnitude of the eclipse, 1.520

(the moon's diameter being unity) ;
and the eclipse takes place on

the moon's north limb.

The magnitude of an eclipse is sometimes expressed in digits,

or twelfths of the moon's diameter. In the present instance, the

eclipse amounts to 18 digits.

303. Beginning and end of total darkness. The beginning and

end of total darkness may be found in the same manner. With

a radius equal to CB, diminished by the moon's semi-diameter

(that is, 39' 7".6 14' 52".0, which equals 24' 15".6, or 1455'
/

.6),

describe about the centre C a circle cutting LN in the points S

and T, which will represent the places of the moon's centre at the

beginning and end of total darkness.

In the triangle CKS, CS=1455".6, and CK=528".0.

Hence KS=v/1455.62 528.02 =1356".5.

Then, to find the time of describing KS, we say,

1663".0 : 1356".5 : : 3600s. : 2936.4s. =48m. 56.4s.
;

which, being subtracted from 16h. 33m. 21.7s., gives the beginning
of total darkness 15h. 44m. 25.3s.

; and, being added to the time

of middle, gives for the end of total darkness 17h. 22m. 18.1s.

304. Contacts with Hie penumbra. The contacts with the penum-
bra may be found in a similar manner. The semi-diameter of the

penumbra is equal to the semi-diameter of the shadow, plus the

sun's diameter, or 39' 7".6 + 32' 4".4= 71' 12".0. If we take the

circle ARB, Fig. 84, to represent the limits of the penumbra, CE
will be equal to 71' 12".0+ 14' 52".0=86' 4".0.

Then, in the triangle CKE, we have given CE=5164".0, and

CK=528".0.

Hence KE=v/51t>4V!-5282 =5136".9.
To find the time of describing KE, we sav,

1663".0 : 5136".9 : : 3600s. : 11120.3s. =3h. 5m. 20.3s.
;

which, being subtracted from 16h. 33m. 21.7s., gives the first con-

tact with the penumbra at 13h. 28rn. 1.4s.
; and, being added to

the time of middle, gives for the last contact with the penumbra
19h. 38m. 42.0s.
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305. Results. The results thus obtained are as follows :

First contact with the penumbra at 13h. 28rn. 1.4s. "1

First contact with the umbra - - 1-4 38 2.5

Beginning of total eclipse
- - - 15 44 25.3 Meantime

Middle of the eclipse 16 33 21.7 at

End of total eclipse 17 22 18.1 Greenwich.

Last contact with the umbra - - 18 28 40.9

Last contact with the penumbra
- 19 38 42.0

Magnitude of the eclipse, 1.520 on the northern limb.

306. Timesfor any other meridian. To obtain the times for any
other place, we have only to add or subtract the longitude. For

New Haven, whose longitude is 4h. 51m. 41.6s. west of Greenwich,
the times will accordingly be

First contact with the penumbra at 8h. 36m. 20s.

First contact with the umbra - - 9 46 21

Beginning of total eclipse
- - - 10 52 44 Mean time

Middle of the eclipse 11 41 40 at

End of total eclipse 12 30 37 New Haven.

Last contact with the umbra - - 13 36 59

Last contact with the penumbra
- 14 47

Ex. 2. Compute the phases of the eclipse of June 11, 1881,

for New York city, longitude 4h. 56m. 0.2s. west of Greenwich,
from the following elements :

Greenwich mean time of opposition in right

ascension 18h. 54m. 23.3s.

Declination of the moon S. 22 52' 52".S

Declination of the earth's shadow - - - S. 23 10 26 .2

Moon's equatorial horizdntal parallax
- - 60 33 .4

Sun's horizontal parallax 8 .8

Moon's semi-diameter 1631.7
Sun's semi-diameter - - - 15 46 .9

Moon's hourly motion in right ascension - 40 20 .6

Sun's hourly motion in right ascension- - 2 35 .6

Hourly motion of moon in declination - - N. 1 .9

Hourly motion of shadow in declination - S. 9 .3

Ans. First contact with the penumbra at llh. 18.8m.
"]

First contact with the umbra - - - - 12 14.7 I Mean time

Middle of the eclipse 13 57.4 L at

Last contact with the umbra - - - - 15 40.1
|

NewYork.

Last contact with the penumbra - - - 16 36.0 J
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CHAPTER XL

ECLIPSES OF THE SUN.

307. Length of the moon's shadow. The length of the moon's

shadow is about equal to the distance of the moon from the earth,

being alternately a little greater and a little less.

Suppose the moon at conjunction to be at one of her nodes.

Her centre will then be in the plane of the ecliptic, and in the

straight line passing through the centres of the sun and earth.

^ Fig. 85.

Let ASB be a section of the sun, KEL that of the earth, and
CMD that of the moon interposed directly between them. Draw

AC, BD, tangents to the sun and moon, and produce these liu.es

to meet in V. Then Y is the vertex of the moon's shadow
;
and

these lines represent the outlines of a cone, whose base is AB, and
whose vertex is V.

The angle 8MB=MVB+MBV ;

hence MVB=8MB-MBV.
But 8MB : SEB : : SE : SM (Art. 1 1 1) : : 400 : 399

;

therefore
*

Now SEB, the sun's mean semi-diameter as seen from the earth
= 16' 1".8; hence 8MB= 16' 4".2, which is the sun's semi-diam-

eter as seen from the moon.
Put j>=the sun's horizontal parallax.

_p'=the moon's horizontal parallax.
s'=the moon's semi-diameter.

Since the parallaxes of bodies at different distances are inverse-

ly as the distances, Art. 136, we shall have
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But since the apparent diameters of the same body at different

distances are inversely as the distances, Art 111, we shall have

SM:ME::*':MBC;

hence MBO=-^-.
y-jp

Now p, p', and s' are known quantities; hence MBC=2".3,
which is the sun's horizontal parallax as observed from the moon.

Hence MVB, the semi-angle of the cone of the moon's shadow,

equals 16' 4".2-2".3 = 16' 1".9.

Then sin. 16' 1".9 : DM (1080 miles) :: rad. : MV = 231,590
miles.

But the mean distance of the moon from the earth's centre is

238,883 miles. Hence, when the moon is at the mean distance

from the earth, her shadow will not quite reach to the earth's sur-

face.

When the earth is at its greatest distance from the sun, the

sun's apparent semi-diameter is 15' 45".5
;
and the angle MVB=

15' 45". 6.

-In this case MV= 235,582 miles. Now when the moon is near-

est the earth, her distance from the centre of the earth is only

221,436 miles. Hence, when the moon is nearest to us, and her

shadow is the longest, the shadow extends 14,000 miles beyond
the earth's centre, or about three and a half times the earth's ra-

dius
;
and there must be a total eclipse of the sun at all places

within this shadow.

308. Breadth of the moon's shadow at the earth. The greatest

breadth of the moon's shadow at the earth, when it falls perpen-

dicularly on the surface, is about 166 miles.

In the triangle FEV, FE : EV : : sin. FVE : sin. VFE.
But when the moon is nearest, and the shadow is the longest,

EV=14,146 miles; and the angle FVE= 15' 45'
/

.6. Also, FE
=3956.6 miles.

In this case VFE =56' 20".9.

But the angle FEG = VFE+FVE = 56' 20".9 + 15' 45".6 =
1 12' 6".5 = arc FG. Hence the arc FH=2 24' 13"; and if

we allow 69 miles to a degree, the breadth of the moon's shadow
is 166 miles, nearly.

When the moon is at some distance from the node, the shadow

falls obliquely on the earth, and its greatest breadth will evident-

ly be increased.
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309. Breadth of tJie moon's penumbra at the earth. The greatest

breadth of the moon's penumbra at the earth's surface, when it

falls perpendicularly
on the surface, is about 4800 miles.

If we draw the tangent lines AD, BC, and produce them to

meet the earth, the sun's rays will be partially excluded from

the space included between DV and DL, as also between CV and

CK. Any point on the line CK will receive light from all points

of the sun's disc. As the point advances toward CV, it will re-

ceive less and less of the sun's light, since a larger portion of the

moon, M, will be interposed between it and the sun. At the

boundary CV, all the rays of the sun are intercepted. This space,

KCV, from which the sun's light is partially intercepted, is called

the moon's penumbra.

The semi-angle of the penumbra CIM=SCB + CSM, of which

SCB is the sun's apparent semi-diameter at the moon, and CSM
is the sun's horizontal parallax at the moon. The breadth of the

penumbra will be greatest when the moon's distance from the

earth is greatest, and the sun's distance is least The sun's great-

est apparent semi-diameter at the moon is 16' 20".2. Hence CIM
16' 22".5.

In the triangle IKM, the angle CKM, when least, is 14' 41".0;

and KM, when greatest, is 249,307 miles.

Then sin. CIM : sin. CKM : : KM : IM = 223,552 miles.

Hence IE =476,815 miles.

Then, in the triangle IEK,
EK : IE : : sin. EIK : sin. EKI= 144 58' 10".

Hence EKN=35 1' 50".

The angle KEI=EKN-EIK=34 45' 28"=the arc KG.
Hence the entire arc KL= 69 30' 56"; and if we allow 69 \

miles to a degree, the breadth of the penumbra is 4808 miles,

nearly.

310. Velocity of the moon's shadow over tiie earth. The moon ad-

vances eastward among the stars about 30' per hour more than

the sun
;
and 30' of the moon's orbit is about 2070 miles, which

therefore we may consider as the hourly velocity with which the

moon's shadow passes over the earth, or at least over that part of

it on which the shadow falls perpendicularly ;
in every other

place the velocity will be increased in the ratio of the sine of the

angle which MV makes with the surface, in the direction of its
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motion, to radius. But the earth's rotation upon its axis will also

affect the apparent velocity of the shadow, and, consequently, the

duration of the eclipse at any point of the earth. If the point be

moving in the direction of the shadow, its velocity in respect to

that point will be diminished, and, consequently, the time in which

the shadow passes over that point will be increased
;
but if the

point be moving in a direction contrary to that of the shadow, as

may happen at places within the polar circle, the relative velocity

of the shadow will be increased, and the time diminished.

811. Different kinds of eclipses of the sun. A partial eclipse of

the sun is one in which a part, but not the whole, of the sun is ob-

scured. A total eclipse is one in which the sun is entirely ob-

scured. It must occur at all those places on which the moon's

shadow falls. A central eclipse is one in which the axis of the

moon's shadow, or the axis produced, passes through a given

place. An annular eclipse is one in which a part of the sun's disc

is seen as a ring surrounding the moon.

The apparent discs of the sun and moon, though nearly equal,

are subject to small varia-
Fig. so.

tions, corresponding to their

variations of distance, in con-

sequence of which the disc of

the moon is sometimes a little

greater, and sometimes a little

less than that of the sun. If

the centres of the sun and 1
moon coincide, and the disc

of the moon be less than that

of the sun, the moon will cov-

er the central portion of the

sun, but will leave uncovered

around it a regular ring or an-

nulus, as shown in Fig. 86. This is called an annular eclipse.

312. Duration of total and annular eclipses. The greatest value

of the apparent radius of the moon, as seen from the earth's cen-

tre, is 1006", which may be increased by the moon's elevation

above the horizon, Art. 215, to 1024"
;
and the least value of the

radius of the sun is 945". Their difference is 79". The greatest
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possible duration of a total solar eclipse will be the time required

for the centre of the moon to gain upon that of the sun twice 79'
v

,

or 158", which would be about 5m. if the earth did not rotate upon
an axis; but, allowing for the earth's rotation, the greatest possi-

ble time during which the sun can be totally obscured is 7m. 58s.

This will be the duration at the equator. In the latitude of Paris,

the greatest possible duration of a total eclipse is 6m. 10s.

The greatest apparent radius of the sun being 978", and the

least apparent radius of the moon being 881", the greatest possi-

ble breadth of the annul us, when the eclipse is central, is 97".

The greatest interval during which the eclipse can continue an-

nular is the time required for the centre of the moon to gain upon
that of the sun twice 97", or 19-i", which would be about 7m. if

the earth did not rotate; but, by the earth's rotation, this quantity

may be increased to 12m. 24s. at the equator. In the latitude of

Paris, the greatest possible duration of an annular eclipse is 9m.

56s.

Since the visual directions of the centres of the sun and moon

vary with the position of the observer on the earth's surface, an

eclipse which is total at one place may be partial at another, while

at other places no eclipse whatever may occur.

Since the moon's apparent diameter increases as her elevation

above the horizon increases, it sometimes happens, when the ap-

parent diameters of the sun and moon are very nearly equal, that

the apparent diameter of the moon, when near the horizon, is a

little less than that of the sun, but becomes a little greater than

that of the sun as it approaches the meridian
;
that is, an eclipse

which is annular at places where it occurs near sunrise, may be

total at places where it occurs near midday.

313. To compute the values ofthe solar ecliptic limits. No eclipse
of the sun can take place unless some part of the globe of the

moon pass within the lines AC and BD, which touch externally

Fig. 87
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the globes of the sun and earth. The apparent distance, MES,
of the moon's centre from the ecliptic at this limit is equal to

AEF+AES+FEM. But AEF^EFC-EAC. Hence MES=
EFC-EAC-fAES+FEM=/_p+s'+s; that is, the sum of the

apparent semi-diameters -of the sun and moon, plus the difference

of their horizontal parallaxes. Taking the greatest and least val-

ues of these quantities, we obtain

the greatest value of MES=1 34' 14",
and the least value=1 24' 19".

Computing the corresponding distances from the moon's node,

as in Art. 289, we find that if, at the time of conjunction, the sun's

distance from the moon's node is more than 18 20', an eclipse is

impossible ; and if its distance from the node is less than 15 25',

an eclipse is inevitable. Between these limits an eclipse may or

may not occur, according to the magnitude of the parallaxes and

apparent diameters.

Since, then, an eclipse can only take place within a few degrees
of the moon's node, and the sun passes the two nodes of the moon
at opposite seasons of the year, it is evident that if an eclipse oc-

curs in January, one or more eclipses may be expected in July;
but no eclipse, either of the sun or moon, could possibly happen
in April or October of the same year.

314. lumber of eclipses in a year. There may be seven eclipses
in a year, and can not be less than two. When there are seven,
five of them are of the sun and two of the moon

;
when there are

but two, they are both of the sun.

A solar eclipse is inevitable if conjunction takes place within

15 25' on either side of the moon's node, comprehending an arc

of longitude of 30 50'. Now, during a synodic revolution of the

moon, the sun's mean motion in longitude is 29 6', and in this

time the moon's nodes move backward 1 31'. Hence the sun's

motion with reference to the moon's node, in one lunation, is 30

37', which is less than 30 50'. Hence at least one solar eclipse
must occur near each node of the moon's orbit, and therefore there

must be at least two solar eclipses annually. But it may happen
that two solar eclipses shall occur near each node, and also one

lunar eclipse ;
and this will happen if opposition takes place very

near the moon's node. In this case the moon will be almost cen-

trally eclipsed; and since the sun's motion in reference to tho
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node during half a lunation is only 15 18', it is evident that, both

at the previous and following new moons, the sun may be within

the ecliptic limits from the node, and may therefore be eclipsed

at each of these new moons. At the full moon, which occurs in

a little less than six months after the former, the sun will be near

the other node of the moon's orbit. Consequently, there must be

a large eclipse of the moon, and there may be an eclipse of the

sun both at the previous and following new moons. At the new
moon which occurs five and a half lunations after this latter full

moon, and therefore a little before the close of the year, the sun

will be near the node again, and must therefore be eclipsed. Thus

there may be two eclipses of the moon and five of the sun within

a period of twelve months, and these may all be embraced in one

calendar year.

315. In the space of eighteen years there are usually about 70

eclipses, 29 of the moon and 41 of the sun. These numbers are

nearly in the ratio of two to three. Nevertheless, more lunar than

solar eclipses are visible in any particular place, because a lunar

eclipse is visible to an entire hemisphere, while a solar is only
visible to a part
The last eclipse of the sun, which was total in any part of

the United States, occurred July 29, 1878, and was total in

Colorado. The last annular eclipse occurred in 1875, and was

annular in Massachusetts. See the list of eclipses, page 327.

316. Period of eclipses. At the expiration of a period of 223

lunations, or about 18 years and 10 days, eclipses, both of the sun

and moon, return again in nearly the same order as during that

period.

The time from one new moon to another is 29.53 days, and,

consequently, 223 lunations include 6585.32 days.
The mean period in which the sun moves from one of the

moon's nodes to the same node again is 346.62 days, because the

node shifts its place to the westward 19 35' per annum. This pe-

riod is called the synodical revolution of the moon's node. Now
19 synodical revolutions of the node embrace a period of 6585.78

days. Hence, whatever may be the distance of the sun from one
of the moon's nodes at any new or full moon, he must at the end
of 223 lunations, be nearly at the same distance from the same
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node. Hence, after a period of 6585.32 days (which is 18 years
11 3- days when there are four bissextile years in the period, or

18 years 10^- days when there are five), eclipses must occur again
in nearly the same order as during that period. This period waa
known to the Chaldaean astronomers. It was by them called the

Saros, and was used in predicting eclipses.

On page 327 is given a list of eclipses, which will illustrate the

period of the Saros, and also show that seven eclipses may occur

within a period of twelve months.

317. Occultations. When the moon passes between the earth

and a star or planet, she must, during the passage, render the body
invisible to some parts of the earth. This phenomenon is called

an occultation of the star or planet The moon, in her monthly
course, occults every star which is included in a zone extending
to a quarter of a degree on each side of the apparent path of her

centre. From new moon to full, the moon moves with the dark

edge foremost
;
and from full moon to new, it moves with the

bright edge foremost. During the former period, stars disappear
at the dark edge, and reappear at the bright edge; while during
the latter period they disappear at the bright edge, and reappear
at the dark edge. The disappearance of a star at the dark limb

is very sudden and startling, the star appearing to be instantly

annihilated at a point of the sky where nothing is seen to inter-

fere with it.

318. Darkness attending a total eclipse of the sun. During a total

eclipse of the sun, the darkness is generally so great as to render

the brighter stars and planets visible. Each of the five brighter

planets has been repeatedly seen during the total obscuration of

the sun
;

all the stars of the first magnitude have in turn been

seen, and, on some occasions, a few stars of the second magnitude
have been detected. During a total eclipse, the degree of dark-

ness is therefore somewhat less than that which prevails at night
in presence of a full moon; but the darkness appears much

greater than this, on account of the sudden transition from day
to night.

This darkness, however, has little resemblance to the usual

darkness of the night, but is attended by an unnatural gloom,
which is sometimes tinged with green, sometimes red, and some-
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times a yellowish-crimson.
The color of the sky changes from

its usual azure blue to a livid purple or violet tint. The color of

surrounding objects becomes yellowish, or of a light olive or

greenish tinge ;
and the figures of persons assume an unearthly,

cadaverous aspect.

319. Moon sometimes visible in an eclipse of the sun. During a

total eclipse of the sun, the moon's surface is sometimes faintly

illumined by a purplish-gray light, spreading over every part of

the disc, so that the light of the disc is quite noticeable to the

naked eye. In the eclipse of May 3, 1733, lunar spots were dis-

tinctly observed by Vassenius at Gottenberg. This effect is pro-

duced by the sun's light reflected from the earth to the moon
;
for

the side of the earth which at such times is presented to the moon

is wholly illumined by the sun, and the light of the earth is about

14 times that of the full moon.

320. Bright points on the moon's disc. During the total eclipse

of June 24, 1778, about a minute and a quarter before the sun be-

gan to emerge from behind the moon's disc, Ulloa discovered,

near the northwest part of the moon's limb, a small point of light,

estimated as equal to a star of the fourth magnitude. This point

gradually increased, and became equal to a star of the second

magnitude, when it united with the edge of the sun, which at that

instant emerged from behind the moon. This phenomenon was
doubtless due to the sun's rays shining through a deep valley on

the moon's limb, and the long continuance of this light was due
to the moon's motion being nearly parallel to that portion of the

sun's circumference.

A similar phenomenon was seen by M.Yalz, of Marseilles, dur-

ing the eclipse of July 8, 1842.

Again the same phenomenon was seen during the eclipse of

July 18, 1860, in Algeria, by two French observers, one with the

naked eye, and the other with a telescope. The bright point

gradually increased, until it blended with the light of the sun's

disc as it emerged from behind the moon.

During the eclipse of May 15, 1836, about 25 seconds before the

middle of the eclipse, Professor Bessel, with the Konigsberg heli-

ometer, observed a faint point of light near the edge of the moon's
limb. The point became brighter, and other similar points ap-
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peared beside it, which soon united, and in this manner rendered

visible the whole of the moon's border between the extremities

of the sun's cusps.

Analogous phenomena have been observed in the occultation

of stars by the moon. When a star just grazes the northern or

southern limb of the moon, it sometimes disappears behind a

lunar mountain, and reappears through an adjacent valley, to dis-

appear again behind the next mountain. Several such disappear-

ances and reappearances have been observed within an interval

of a few minutes.

321. The corona. During the total obscuration of the sun, the

dark body of the moon appears surrounded by a ring of light

called the corona. This ring is of variable extent, and resembles

the "
glory" with which painters encircle the heads of saints. It

is brightest next to the moon's limb, and gradually fades to a dis-

tance equal to one third of her diameter, when it becomes con-

founded with the general tint of the heavens. Sometimes its

breadth is nearly equal to that of the moon's diameter. The
corona generally begins 5 or 6 seconds before the total obscura-

tion of the sun, and continues a few seconds after the sun's reap-

pearance. Sometimes the corona is distinctly seen at places where

the eclipse is not quite total.

The color of the corona has been variously described. Some-

times it is compared to the color of tarnished silver. Sometimes

it is described as of a pearl white
;
sometimes of a pale yellow ;

sometimes of a golden hue
;
sometimes peach-colored, and some-

times reddish.

The intensity of the light of the corona is sometimes such that

the eye is scarcely able to support it
;
but generally it is described

as precisely similar to that of the moon.

The corona generally presents somewhat of a radiated appear-

ance. Sometimes these rays are very strongly marked ;
and long

beams have occasionally been traced to a distance of 3 or 4 from

the moon's limb.

322. Cause of the corona. Some have maintained that this co-

rona is caused by the diffraction of the sun's light in its passage

near the edge of the moon. But the diffracted light, surrounding
an opaque circular disc, consists of concentric rings exhibiting a
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regular succession of colors pale blue, yellow, and red. If the

corona seen in solar eclipses were due to diffraction, it ought to

exhibit a series of concentric colored rings, like those seen sur-

rounding the moon when obscured by a thin haze. Such is not

the appearance actually observed. It is more probable that this

corona is due to an atmosphere surrounding the sun, extending to

a height of several thousand miles above its disc, and reflecting a

portion of the sun's light.

The radiated appearance of the corona is probably analogous
to the rays which are frequently seen in the western sky after

sunset, and which are caused by the shadows of clouds situated

near, or perhaps below our visible horizon. In like manner, the

clouds which float in the solar atmosphere intercept a portion of

the light of the sun's disc, and the space behind them is less

bright than that portion of space which is illumined by the un-

obstructed rays of the sun.

V323. Baily s beads. When, in the progress of the eclipse, the

sun's disc has been reduced to a thin crescent, this crescent often

Fi 8S appears as a band of brilliant points, sep-
arated by dark spaces, giving it the ap-

pearance of a string of brilliant beads.

The same peculiarity is noticed in an-

nular eclipses a few seconds previous to

the formation, and again a few seconds

previous to the rupture, of the annul us.

This phenomenon was first clearly de-

scribed by Sir Francis Baily on occasion

of the annular eclipse of May 15, 1836,
and it has hence acquired the name of Baily 's leads. This ap-

pearance is generally ascribed to the inequalities of the moon's
surface. The outline of the moon's disc is not a perfect circle,
but is full of notches; and these inequalities are easily seen when
the moon's disc is projected upon that of the sun. Just before

the commencement of the total eclipse, the tops of the lunar
mountains extend to the edge of the sun's disc, but still permit
the sun's light to glimmer through the hollows between the
mountain ridges.

These appearances are materially modified by the color of the

glass through which the observations are made. They are most
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conspicuous through a red glass, and through certain colored

glasses are scarcely noticed at all. This peculiarity is probably
due to the unequal penetrating power of the differently colored

rays of the sun. The red rays of the sun are less readily ab-

sorbed than any other rays of the spectrum ;
and a glass which

transmits only the red rays will allow the sun's light to appear

through minute crevices in the edge of the moon, when rays of

any other color would be entirely absorbed by the colored glass

through which the observation is made.

324. Flame-like protuberances. Immediately after the com-

mencement of the total obscuration, red protuberances, resem-

bling flames, may be seen to issue from behind the moon's disc.

These appearances were noticed in the eclipse of May 3, 1733,

and they have been re-observed during every total solar eclipse

which has taken place since that time. They did not, however,
attract much attention before the eclipse of July 8, 1842, when

they were carefully observed and delineated in accurate diagrams.

They were again made the subject of special study in the eclipse

of July 28, 1851, and also in that of July 18, 1860.

The forms of these protuberances are very various, and some

of them quite peculiar. Many of them are nearly conical, the

height being frequently greater than the breadth of the base.

Others resemble the tops of a very irregular range of hills stretch-

ing continuously along one sixth of the moon's circumference.

Some of these protuberances reach to a vast height, and show re-

markable curvature. One has been compared to a sickle
;
a sec-

ond to a Turkish cimeter; a third to a boomerang, with one ex-

tremity extending off horizontally far beyond the support of the

base
;
while a fourth was of a circular form, entirely detached

from the moon's limb by a space nearly equal to its own breadth.

The size of these protuberances is very various. Some have

been estimated to have an apparent height of 3', which would im-

ply an absolute height of 80,000 miles
;
while others have every

intermediate elevation down to the smallest visible object.

The colors of these protuberances have been variously de-

scribed. Some have been called simply reddish, while others

have been characterized as rose-red, purple, or scarlet; and a few

have been represented as nearly white.

During the solar eclipses of 1842, 1851, and 1860
3
the largest

M
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of these protuberances were seen by the unassisted eye. In 1860,

some of them were observed several seconds before the total ob-

scuration
;
and in 1842, as well as in 1851, some of them remained

visible from 5s. to 7s. after the sun's emersion.

325. These protuberances emanatefrom the sun. These protuber-

ances emanate from the disc of the sun, and not from that of the

moon. This is proved by the following observations made in

1851. The protuberances seen near the eastern limb decrease in

dimensions from the commencement of the total eclipse to its

close, while those near the western limb increase from the com-

mencement to the close
; indicating that the moon covers more

and more the protuberances on the eastern side of the sun's disc,

and gradually exposes a larger and larger portion of the protuber-

ances on the western side. Again, during the eclipse of 1860, the

astronomers who went to Spain to observe the eclipse obtained

two excellent photographs, in which these flame-like protuber-

ances were faithfully copied ;
and it was found that the protuber-

ances retained a fixed position with reference to the sun as the

moon glided before it; and they did not change their form, ex-

cept as the moon, by passing over them, shut them off on the east-

ern side, while fresh ones became visible on the western side. See

Plate III.

326. Nature of these protuberances. That these protuberances
are not solid bodies like mountains is proved by their peculiar

forms, the tops frequently extending horizontally far beyond the

support of the base
;
and they sometimes appear entirely detached

from the sun's disc without any visible support.
The same argument proves that they are not liquid bodies;

and hence we must conclude that they are gaseous, or are sus-

tained in a gaseous medium.

These flame-like emanations seem to be analogous to the clouds

which float at great elevations in our own atmosphere ;
and we

are naturally led to infer that the sun is surrounded by a trans-

parent atmosphere, rising to a height exceeding one tenth of his

diameter; and in this atmosphere there are frequently found

cloudy masses of extreme tenuity floating at various elevation?,
and sometimes rising to the height of 80,000 miles above the lu-

minous surface of the sun.
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CHAPTER XII.

DIFFERENT METHODS OF FINDING THE LONGITUDE OF A PLACE.

327. Difference of time under different meridians. The sun, in

his apparent diurnal motion from east to west, passes successively
over the meridians of different places ;

and noon occurs later and

later as we travel westward from any given meridian. If we
start from the meridian of Greenwich, then the sun will cross the

meridian of a place 15 west of Greenwich one hour later than it

crosses the Greenwich meridian that is, at one o'clock, Green-

wich time. A difference of longitude of 15 corresponds to a dif-

ference of one hour in local times. In order, then, to determine

the longitude of any place from Greenwich, we must accurately
determine the local time, and compare this with the correspond-

ing Greenwich time.

328. Method of chronometers. Let a chronometer which keeps
accurate time be carefully adjusted to the time of some place
whose longitude is known for example, Greenwich Observatory^.

Then let the chronometer be carried to a place whose longitude
is required, and compared with the correct time reckoned at that

place. The difference between this time and that shown by the

chronometer will be the difference of longitude between the given

place and Greenwich.

It is not necessary that the chronometer should be so regulated
as neither to gain nor lose time. This would be difficult, if not

impracticable. It is only necessary that its rate should be well

ascertained, since an allowance can then be made for its gain or

loss during the time of its transportation from one place to the

other.

The manufacture of chronometers has attained to such a degree
of perfection that this method of determining difference of longi-

tude, especially of stations not very remote from each other, is

one of the best methods known. The most serious difficulty in
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the application of the method consists in determining the rate of

the chronometer during the journey; for chronometers generally

have a different rate, when transported from place to place, from

that which they maintain in an observatory. For this reason,

when great accuracy is required, it is customary to employ a

large number of chronometers as checks upon each other; and

the chronometers are transported back and forth a considerable

number of times.

This is the method by which the mariner commonly determ-

ines his position at sea. Every day, when practicable, he meas-

ures the sun's altitude at noon, and hence determines his latitude.

About three hours before or after noon he measures the sun's al-

titude again, and from this he computes his local time by Art. 145.

The chronometer which he carries with him shows him the true

time at Greenwich, and the difference between the two times is

his longitude from Greenwich.

329. By eclipses of the moon. An eclipse of the moon is seen at

the same instant of absolute time in all parts of the earth where

the eclipse is visible. Therefore, if at two distant places the times

of the beginning of the eclipse are carefully observed, the differ-

ence of these times will give the difference of longitude between

the places of observation
; but, on account of the gradually in-

creasing darkness of the penumbra, it is impossible to determine

the precise instant when the eclipse begins, and therefore this

method is of no value except under circumstances which preclude
the use of better methods.

330. By (he eclipses of Jupiter's satellites. The moons of Jupiter
are eclipsed by passing into the shadow of Jupiter in the same
manner as our moon is eclipsed by passing into the shadow of the

earth. These eclipses begin at the same instant of absolute time
for all places at which they are visible. If, then, the times of the

beginning of an eclipse be accurately observed at two different

places, the difference of these times will be the difference of longi-
tude of the places. Since, however, the light of a satellite dimin-

ishes gradually while entering the shadow, and increases gradu-
ally on leaving it, the observed time of beginning or ending of the

eclipse must depend on the power of the telescope used, and also

upon the eye of the observer. This method, therefore, is of nc
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value at fixed observatories, "where better methods are always
available.

331, By an eclipse of the sun or the occupation of a star. The
times of the beginning and end of an eclipse of the sun, or of the

occultation of a star or planet at any place, depend on the posi-

tion of the place. We can not, therefore, use a solar eclipse as

an instantaneous signal for comparing directly the local times at

two stations; but we may deduce by computation from the ob-

served beginning and end of an eclipse, the time of true conjunc-
tion of the sun and moon that is, the time of conjunction as seen

from the centre of the earth
;
and this is a phenomenon which

happens at the same absolute instant for every observer on the

earth's surface. If the eclipse has been observed under two dif-

ferent meridians, we may determine the instant of true conjunc-
tion from the observations at each station

;
and since the abso-

lute instant of this phenomenon is the same for both places, the

difference of the results thus obtained is the difference of longi-

tude of the two stations. This is one of the most accurate meth-

ods known to astronomers for determining the difference of longi-

tude of two stations remote from each other. This is especially

true when the moon crosses a cluster containing a large number
of stars, as the Pleiades.

332. By moon culminating stars. Certain stars situated near the

moon's path, and passing the meridian at short intervals before

or after the moon, are called moon culminating stars. The moon's

motion in right ascension is very rapid, amounting to about half

a degree, or two minutes in time, during a sidereal hour that is,

during the interval that elapses from the time a star is on the me-

ridian of any place, till it is on the meridian of a place whose

longitude is 15 west of the former. Hence the intervals between

the passages of the moon and a star over the meridians of two

places differing an hour in longitude must differ about two min-

utes; and for other differences of longitude there must be a pro-

portional difference in the intervals. Hence, if the intervals be-

tween the passages of the moon and a star over the meridians of

two places be accurately observed, the difference of their longi-

tude may be found by means of the moon's hourly variation in

right ascension.
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The chief disadvantage of this method consists in this circum-

stance, that an error in the observed increase of right ascension

will produce an error nearly 30 times as great in the computed

longitude. Hence, to obtain a satisfactory result by this method

requires a series of observations made with the utmost care, and

continued through a long period of time.

333. By lunar distances. The Nautical Almanac furnishes for

each day the distance of the moon from the sun, the larger plan-

ets, and several stars situated near the moon's path. These dis-

tances are given for Greenwich time, and are such as they would

appear to a spectator placed at the centre of the earth. A mari-

ner on the ocean measures with a sextant the distance from the

moon to one of the stars mentioned in the Almanac. He corrects

this distance for refraction and parallax, and thus obtains the true

lunar distance as it would be seen at the centre of the earth. By
other observations, he knows the local time at which this distance

was measured, and, by referring to the Nautical Almanac, he finds

the Greenwich time at which the lunar distance was the same.

The difference between the local time and the Greenwich time

represents the longitude of the place of observation from Green-

wich. This method of finding the longitude may be practiced at

sea, and in long voyages should always be resorted to as a check

upon the method by chronometers.

33-i. By the electric telegraph. The difference of the local times

of two places may be determined by means of any signal which
can be seen or heard at both places at the same instant. When
the places are not very distant, the explosion of a rocket, or the

flash of gunpowder, or the flight of a shooting star may serve

this purpose.
The electric telegraph affords the means of transmitting signals

to a distance of a thousand miles or more with scarcely any ap-

preciable loss of time. Suppose that there are two observatories

at a considerable distance from each other, and that each is pro-
vided with a good clock, and with a transit instrument for determ-

ining its error; then, if they are connected by a telegraph wire,

they have the means of transmitting signals at pleasure from either

observatory to the other for the purpose of comparing their local

times. For convenience, we \\\\\ call the most eastern station E,
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and the western W. The following is one mode of comparing
their local times.

335. Mode of comparing the local times. The plan of operations

having been previously agreed upon, the astronomer at E strikes

the key of his register, and makes a record of the time according
to his observatory clock. Simultaneously with this signal at E,

the armature of the magnet atW is moved, producing a click like

the ticking of a watch. The astronomer at W hears the sound,
and notes the instant by his clock. The difference between the

time recorded at E and that at W is the difference between the

two clocks. A single comparison of this kind will furnish the

difference of longitude to the nearest second
;
but to obtain the

fraction of a second with the greatest precision requires many
repetitions, and this is accomplished as follows :

At the commencement of the minute by his clock, the astron-

omer at E strikes his signal key, and the time of the signal is re-

corded both at E and "W. At the close of 10 seconds the signal

is repeated, and the observation is recorded at both stations. The
same thing is done at the end of 20 seconds, of 30 seconds, and so

on to 20 repetitions. The astronomer at "W then transmits a se-

ries of signals in the same manner, and the times are recorded at

both stations.

336. The velocity of the electric fluid. This double set of signals

not only furnishes an accurate comparison of the two clocks, but

also enables us to measure the velocity of the electric fluid. If

the fluid requires no time for its transmission, then the apparent
difference between the two clocks will be the same, whether we
determine it by signals transmitted from E to W, or from W to

E. But if the fluid requires time for its transmission, these re-

sults will differ. Suppose the true difference of longitude be-

tween the places is one hour, and that it requires one second for

a signal to be transmitted from E to W. Then, if at 10 o'clock

a signal be made and recorded at E, it will be a second before the

signal is heard and recorded at "W that is, the time recorded at

W will be 9 hours and 1 second
;
and the apparent difference be-

tween the two clocks will be 59 minutes and 59 seconds. But if

a signal be made at "W at nine o'clock, it will be heard at E at 10

hours and 1 second
;
and the apparent difference between the two
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clocks will be 1 hour and 1 second. Thus the differences between

the two clocks, as derived from the two methods of comparison,

diifer by twice the time required for the transmission of a signal

from E to W. Numerous observations, made on the longest lines

and with the greatest care, have shown that the velocity of the

electric fluid upon the telegraph wires is about 16,000 miles per

second. The mean of the results obtained by signals transmit-

ted in both directions, gives the true difference between the two

clocks, independent of the time required in the transmission of

signals.

337. How the clock may break the electric circuit. The most ac-

curate method of determining difference of longitude consists in

employing one of the clocks to break the electric circuit each sec-

ond. This may be accomplished in the following manner : Near

the lower extremity of the pendulum place a small metallic cup

containing a globule of mercury, so that once in every vibration

the pointer at the end of the pendulum may pass through the

mercury. A wire from one pole of the battery is connected with

the supports of the pendulum, and another wire from the other

pole of the battery connects with the cup of mercury. When the

pointer is in the mercury, the electric circuit will be complete

through the pendulum ;
but as soon as it passes out of the mer-

cury, the circuit will be broken.

When the connections are properly made, there will be heard

a click of the magnet at each station, simultaneously with the

beats of the electric clock. If each station be furnished with an

ordinary Morse register, there will be traced upon the paper a se-

ries of lines, of equal length, separated by short intervals, thus:

The mode of using the register for marking the date of any
event is to strike the key of the register at the required instant,

when an interruption will be made in one of the lines of the grad-
uated scale

;
and its position will indicate not only the second,

but the fraction of a second at which the signal was made.
We now employ the same electric circuit for telegraphing tran-

sits of stars. A list of stars having been selected beforehand, and
furnished to each observer, the astronomer at E points his transit

telescope upon one of the stars as it is passing his meridian, and
strikes the key of his register at the instant the star passes sue-
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cessively each wire of his transit, and the dates are recorded, not

only upon his own register, but also upon that at "W. When the

same star passes over the meridian of W, the observer there goes

through the same operations, and his observations are printed

upon both registers. These observations furnish the difference

of longitude of the two stations, independently of the tabular place
of the star employed, and also independently of the absolute er-

ror of the clock.

CHAPTER XIII.

THE TIDES.

338. Definitions. The alternate rise and fall of the surface of

the sea twice in the course of a lunar day, or of 24h. 51m. ofmean
solar time, is the phenomenon known by the name of the tides.

When the water is rising it is said to be flood tide, and when it is

falling, ebb tide. When the water is at its greatest height it is said

to be high water, and when at its least height, low water.

339. Spring and neap tides. The time from one high water to

the next is, at a mean, 12h. 25m. 24s. Near the time of new and

full moon the tide is the highest, and the interval between the

consecutive tides is the least, viz., 12h. 19m. Near the quadra-

tures, or when the moon is 90 distarft from the sun, the tides are

the least, and the interval between them is the greatest, viz., 12h.

30m. The former are called the spring tides, and the latter the

neap tides. At New York the average height of the spring tides

is 5A feet, and of the neap tides 3A feet.

340. The establishment of a port. The time of high water is

mostly regulated by the moon
;
and for any given place, the hour

of high water is always nearly at the same distance from that of

the moon's passage over the meridian. The mean interval be-

tween the moon's passage over the meridian, and high water at

any port on the days of new and full moon, is called the establish-

ment of the port. The mean interval at New York is 8h. 13m.,
and the difference between the greatest and the least interval oc-

curring in different parts of the month is 43 minutes.
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3-il. Tides at perigee and apogee. The height of the tide is af-

fected by the distance of the moon from the earth, being highest

near the time when the moon is in perigee, and lowest near the

time when she is in apogee. When the moon is in perigee, at or

near the time of a new or full moon, unusually high tides oc-

342. Cause oftiie tides. The facts just stated indicate that the

moon has some agency in producing the tides. The tides, how-

ever, are not due to the simple attraction of the moon upon the

earth, but to the difference of its attraction on the opposite sides

Fig. 89.

of the earth. Let ACEG represent the earth, and let us suppose
its entire surface to be covered with water

; also, let M be the

place of the moon. The different parts of the earth's surface are

at unequal distances from the moon. Hence the attraction which

the moon exerts at A is greater than that which it exerts at B
and II, and still greater than that which it exerts at C and G;
while the attraction which it exerts at E is least of all. The at-

traction which the moon exerts upon the mass of water imme-

diately under it, near the point Z, is greater than that which it

exerts upon the solid mass of the globe. The water will there-

fore heap itself up over A, forming a convex protuberance that

is, high water will take place immediately under the moon. The
water which thus collects at A will flow from the regions C and

G, where the quantity of water must therefore be diminished

that is, there will be low water at C and G.

The water at N is less attracted than the solid mass of the earth.

The solid mass of the earth will therefore recede from the waters

at N, leaving the water behind, which will thus be heaped up at

N, forming a convex protuberance, or high water, similar to that

at Z. The sea is therefore drawn out into an ellipsoidal form,

having its major axis directed toward the moon.
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343. Effect of the surts attraction. The attraction of the sun

produces effects similar to those of the moon, but less powerful in

raising a tide, because the inequality of the sun's attraction on dif-

ferent parts of the earth is very small. It has been computed
that the tidal wave due to the action of the moon is about double

that which is due to the sun.

There is, therefore, a solar as well as a lunar tide wave, the lat-

ter greater than the former, and each following the luminary from

which it takes its name. When the sun and moon are both on

the same side of the earth, or on opposite sides, that is, when it

is new or full moon, their effects in producing tides are combined,

and the result is an unusually high tide, called spring tide.

When the moon is in quadrature, the action of the sun tends

to produce low water where that of the moon produces high wa-

ter, and the result is an unusually small tide, called neap tide.

344. Effect of the moon's declination on the tides. The height of

the tide at a given place is influenced by the declination of the

moon. When the moon has no declination, the highest tides

should occur along the equator; and the heights should diminish

from thence toward the north and south
;
but the two daily tides

at any place should have the same height. When the moon has

north declination, as shown in Fig. 90, the highest tides on the

side of the earth next the moon will be at places having a cor-

Fir. 00.

A,''

responding north latitude, as at B, and on the opposite side at

those which have an equal south latitude. And of the two daily
tides at any place, that which occurs when the moon is nearest

the zenith should be the greatest. Hence, when the moon's dec-
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lination is north, the height of the tide at a place in north lati-

tude should be greater when the moon is above the horizon than

when she is below it. At the same time, places south of the

equator have the highest tides when the moon is below the hori-

zon, and the least when she is above it. This is called the diur-

nal inequality, because its cycle is one day ;
but it varies greatly

in amount at different places.

The great wave which constitutes the tide is to be considered

as an undulation of the waters of the ocean, in which (except

when it passes over shallows or approaches the shores) there is

little or no progressive motion of the water.

345. Why the phenomena of the tides are so complicated. The

actual phenomena of the tides are far more complicated than they
would be if the earth were entirely covered with an ocean of great

depth. The water covers less than three quarters of the earth's

surface, and a considerable part of this water is less than a mile in

depth. Two great 'continents extend from near the north pole to

a great distance south of the equator, thus interrupting the regu-

lar progress of the tidal wave around the globe. In the northern

hemisphere, the waters of the Atlantic can communicate with

those of the Pacific only by Behring's Strait, a channel 36 mile?

in breadth, which effectually prevents the transmission of any
considerable wave from the Atlantic to the Pacific through the

northern hemisphere. In the southern hemisphere, the American

continent extends to 56 of S. latitude, and in about latitude 60

commences a range of islands, near which are indications of an

extensive antarctic continent, leaving a passage only about 500

miles in breadth. Through this passage the motion of the tidal

wave (as we shall presently see) is eastward, and not westward;
whence we conclude that the tides of the Atlantic are not propa-

gated into the Pacific.

846. Cotidal lines. The phenomena of the tides, being thus ex-

ceedingly complicated, must be learned chiefly from observations
;

and in order to present the results of observations most conven-

iently upon a map, we draw a line connecting all those places
which have high water nt the same instant of absolute time. Such
lines are called cotidal lines. The accompanying map, Plate I.,

shows the cotidal lines for nearly every ocean, drawn at intervals

of 3 hours, and expressed in Greenwich time.
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347. Origin of the tidal wave. By inspecting tliis map, we per-

ceive that the great tidal wave originates in the Pacific Ocean, not

far from the western coast of South America, in which region

high water occurs about two hours after the moon has passed
the meridian. The wave thus formed, if left undisturbed, would

travel, like ordinary waves, with a velocity depending upon the

depth of water. When the breadth of a wave is very great in

comparison with the depth of water, the velocity of its progress
is equal to that which a heavy body would acquire in falling by
gravity through half the depth of the liquid. The velocity of

such a wave for -different depths of the ocean is as follows:
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349. Tides of tiie North Atlantic. A portion of the great At-

lantic wave advances up Baffin's Bay, and at the end of 56 hours

reaches the latitude of 78. The principal part of the Atlantic

wave, however, turns eastward toward the Northern Ocean, and

in 44 hours brings high water to the western coast of Ireland.

After passing Scotland, a portion of this wave tunfs southward

with diminished velocity into the North Sea, and thence follows

up the Thames, bringing high water to London at the end of 66

hours from the first formation of this wave in the Pacific Ocean.

350. Velocity of the tidal wave in shallow water. As the tidal

wave approaches the shallow water of the coast, its velocity is

speedily reduced from 500, or perhaps 900 miles per hour, to 100

miles, and soon to 30 miles per hour
;
and in ascending bays and

rivers its velocity becomes still less. From the entrance of Chesa-

peake Bay to Baltimore the tide travels at the average rate of 16

miles per hour, and it advances up Delaware Bay with about the

same velocity. From Sandy Hook to New York city the tide

advances at the rate of 20 miles per hour, and it travels from

New York to Albany in 9h. 9m., being at the average rate of

nearly 16 miles per hour.

From New York Bay the tidal wave is propagated through
East River until it meets the wave which has come in from the

Atlantic through the eastern end of the Sound. This place of

meeting is only 21 miles from New York, showing that the veloc-

ity of the tidal wave through East River is only 7 miles per
hour a result which must be ascribed to the narrowness and in-

tricacy of the channel.

351. Tidal wave on the western coast of South America. The
tidal wave which we have thus traced through oceans, bays, and

rivers, has every variety of direction
;
in some places advancing

westward, and in others eastward
;
in some places northward, and

in others southward
;
but in each case it may be regarded as a

continuous forward movement, and the change in its direction re-

sults from a change in the direction of the channel. But there is

one exception to this general rule. We have traced the origin of

the tidal wave to a region about 1000 miles west of the coast of

South America. From this point high water is not only propa-
gated westward around the globe, but also eastward toward Cape
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Horn. In this region the motion of the tidal wave appears to be

similar to that of the wave produced by throwing a stone upon
the surface of a tranquil lake, the wave traveling off in all direc-

tions from the first point of disturbance.

352. Is thftidal wave a free or a forced oscillation? If the moon
should suddenly cease its disturbing action upon the waters of the

ocean, the tidal wave already formed would travel forward with

a velocity depending solely upon the depth of water, and this

would be called a free wave. Now the moon continually tends to

form high water directly beneath it that is, it tends to carry high
water westward at the rate of 1000 miles per hour over the equa-
tor. Such a wave, if it could actually be formed, would be called

a forced oscillation, because its velocity would be independent of

the depth of water. Is, then, the great tidal wave a free or a

forced oscillation? We may answer this question by observing
the velocity of the tidal wave in the Atlantic Ocean, whose depth
has been approximately determined. The velocity of the tidal

wave in the North Atlantic, from the equator to latitude 50, is

about 640 miles per hour, corresponding to a depth of 27,500 feet,

which is somewhat greater than the average depth of the At-

lantic. The velocity of the tidal wave in the Atlantic appears to

be about one third greater than that of a free wave, and this ex-

cess of velocity is probably due to the immediate action of the

sun and moon
;
in other words, the tidal wave is, to some extent,

a, forced oscillation, but its rate of progress appears to be determ-

ined mainly by the depth of water.

%

353. Height of the tides. At small islands in mid-ocean the tides

never rise to a great height, sometimes even less than one foot
;

and the average height of the tides for the islands of the Atlantic

and Pacific Oceans is only 3| feet. Upon approaching an exten-

sive coast where the water is shallow, the velocity of this tidal

wave is diminished, the cotidal lines are crowded more closely to-

gether, and the height of the tide is thereby increased; so that

while in mid-ocean the average height of the tides does not ex-

ceed 3 feet, the average in the neighborhood of continents is not

less than 4 or 5 feet. According to theory, the height of the

wave should vary inversely as the fourth root of the depth ;
that

is, in water 100 feet deep, the wave should be twice as high as in
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water 1600 feet deep. Fig. 91 shows the change in the form of

waves in approaching shallow water.

Fig. 91. E G I LAV V K

35-1. Height of the tides modified by the conformation of the coast.

Along the coast of an extensive continent the height of the tides

is greatly modified by the conformation of the shore line. When
the coast is indented by broad bays which are open in the direc-

tion of the tidal wave, this wave, being contracted in breadth,

must necessarily increase in height, so that at the head of a bay
the height of the tide may be several times as great as at the en-

trance. The operation of this principle is exhibited at numerous

places upon the Atlantic coast. Thus, if we draw a straight line

rig. 93. from Cape Hatteras to the southern

part of Florida, it will cut off a bay
about 200 miles in depth. At Cape
Hatteras and Cape Florida the tide

rises only 2 feet; at Cape Fear and

St. Augustine it rises 4 feet; while
- at Savannah it rises 7 feet

355. Tides in the Bay ofFundy. If we draw a straight line from

Nantucket to Cape Sable, it will cut off a bay in which the phe-
nomena of the tides are still more remarkable. At Nantucket

the tide rises only 2 feet
;
at Boston it rises 10 feet

;
near the enr

trance to the Bay of Fundy, 18 feet
;
while at the head of the bay

it sometimes rises to the height of 70 feet. This result is due

mainly to the contraction of the channel through which the tidal

wave advances.

Fig. 93.
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356. Tides ofLong Island Sound, etc. So, also, at the east end of

Long Island Sound, the tide rises only 2 feet
;
but in its progress

westward through the Sound the height continually increases,

until at the west end the height is more than 7 feet

At the entrance to Delaware Bay the tide rises only 3 feet,

while at New Castle it rises 6J feet

The tide from the North Atlantic is propagated through the

Gulf of St. Lawrence, and thence through the River St. Lawrence,
at the average rate of about 70 miles per hour, being 12 hours

from the ocean to Quebec. This tide increases in height as it ad-

vances, being only 9 feet at the mouth of the St. Lawrence, while

it is 20 feet at Quebec.

357. Tides modified by a projecting promontory. A promontory,
as A, projecting into the ocean,

so as to divide the tidal wave and

throw it off upon either side, not

only causes the tide at B and C
to rise above the mean height, but

sometimes reduces the tide at A below the mean height. Thus,
at Cape Hatteras, the tide rises less than 2 feet in height, while

along the coast on either side the tide rises to the height of 5 or

6 feet. So, also, on the south side of Nantucket, the tides are less

than 2 feet in height, while along the coast north of Cape Cod the

tide rises 10 feet in height.

358. Tides on the coast of Ireland. So, also, on the southwest

Fig. rs. /
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coast of Ireland, where the tidal wave from the Atlantic first

strikes the coast, the tide is less than it is at a short distance along

the coast either eastward or northward.

In some cases the form and position of a promontory are such

as to divert the tidal wave from some part of the coast, and leave

it almost destitute of a tide. Such a case occurs on the east coast

of Ireland. The wave from the Atlantic, being forced up St

George's Channel, is driven upon the coast of Wales, where the

tide rises to the height of 36 feet, while it is almost wholly di-

verted from the opposite coast of Ireland, where the range of the

tide is only 2 feet.

359. Tides of rivers. The tides of rivers exhibit the operation

of similar principles. In a channel of uniform breadth and depth,

the height of the tide should gradually diminish, in consequence
of the effect of friction. But if the channel contracts or shoals rap-

idly, the height of the tide will increase. There is, then, a certain

rate of contraction, with which the range of the tides will remain

stationary. If the river contracts more rapidly, the height of the

tides will increase
;
if the channel expands, the height of the tides

will diminish. Hence, in ascending a long river, it may happen
that the height of the tides will increase and decrease alternately.

Thus, at New York, the mean height of the tide is 4.3 feet
;

at

"West Point, 55 miles up the Hudson River, the tide rises only 2.7

feet
;
at Tivoli, 98 miles from New York, the tide amounts to 4

feet; while at Albany it rises only 2.3 feet

360. The diurnal inequality in the height of the tides. If the sun

and moon moved always in the plane of the equator, and the

earth were entirely covered with water to a great depth, the two

daily tides should have nearly the same height ;
but when they

are out of the equator, the two daily tides should generally be

unequal. The moon sometimes reaches 28 north declination, in

which case it tends to raise the highest tide at a station in latitude

28 north, while the highest tide on the opposite side of the earth

should be in latitude 28 south. Hence the two tides which are

formed in the northern hemisphere under opposite meridians

must be of unequal heights that is, the morning and evening
tides at a given place should be unequal. The same would be

true for the southern hemisphere, but on the equator there would
be no such diurnal inequality.
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361. Diurnal inequality in the North Atlantic Ocean. Along the

Atlantic coast of the United States, when the moon has its great-

est declination, the difference between high water in the forenoon

and afternoon averages about 18 inches
j
but at Boston this dif-

ference sometimes amounts to 36 inches.

On the coast of Ireland, the diurnal inequality, at its maximum,
is only one foot, while the average height of the tides is nine feet.

On some parts of the European coast the diurnal inequality is

still smaller, and can with difficulty be detected in a long series

of observations.

362. Diurnal inequality on the Pacific coast. On the Pacific coast

of the United States, when the moon is far from the equator, there

is one large and one small
Fijr.ro.

tide during each day. In

the Bay of San Francisco,

the difference between high 7 I/T\

and low water in the fore-

noon is sometimes only two s U, / \ /
inches, while in the afternoon

of the same day the differ-

ence is 5 feet. When the

moon is on the equator this

inequality disappears, and
^

/

the two daily tides are near-

ly equal.

At other places on the Pacific coast this inequality in the two

daily tides is still more re-

markable. At Port Town-

send, near Vancouver's Isl-

and, when the moon has its

greatest declination, there is

no descent corresponding to

morning low water, but mere-

ly a temporary check in the

rise of the tide. Thus one of

the two daily tides becomes

obliterated
;
that is, we find

but one tide in the 24 hours.

Similar phenomena occur at
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other places upon the Pacific coast, and also on tb coast of

Kamtschatka.

363. Cause of these variations in the diurnal inequality. The tide

actually observed at any port is the effect, not simply of the im-

mediate action of the sun and moon upon the waters of the ocean,

but is rather the resultant of their continued action upon the wa-

ters of the different seas through which the wave has advanced

from its first origin in the Pacific until it reaches the given port,

embracing an interval sometimes of one or two days, and perhaps
even longer. During this period the moon's action tends some-

times to produce a large tide, and sometimes a small one
;
and in

a tide whose age is more than 12 hours, these different effects are

combined so as sometimes partly to obliterate the diurnal ine-

quality, and sometimes to exaggerate it. This is probably the

reason why the diurnal inequality is less noticeable in the North

Atlantic than in the North Pacific.

364. Four tides in 24 hours. In some places the tide rises and

falls four times in 2-i hours. This happens on the east coast of

Scotland, where the form of the tidal wave is such as is repre-

Fig.98. sentedby the annexed fig-

ure. This anomaly is as-

cribed to the superposition
of two tidal waves, one

traveling round the north

of Scotland, and advanc-

ing southward through the North Sea, while the other passes

through the English Channel, and thence advances northward

into the same sea. At some places these two waves arrive near-

ly at the same hour, and are so superposed as not to be distin-

guished from each other
;
but at other places one arrives 2 or 3

hours behind the other, thus presenting the appearance of high
water 4 times in 24 hours.

365. Small tides of the Pacific Ocean. Near the middle of the

Pacific Ocean, in the neighborhood of the Society Islands, from

latitude 13 to 18 S., and from longitude 140 to 176 W., the

tides are smaller than have been found in any other portion of

the open sea, averaging less than one foot in height At Tahiti
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(latitude 17 29' S., longitude 149 29' W.), the tides at full moon
rise to the height of about 15 inches, and at the quadratures only
about 3 inches. There are two high waters daily occurring near

noon and midnight, being seldom earlier than 10 A.M., or later

than 2J PM.

366. Cause of these peculiarities. It is uncertain what is the

cause of this small height of the tides, but it is believed that the

following consideration will explain it, at least in part. The

original tide wave, starting from the eastern part of the Pacific

Ocean, reaches Tahiti about six hours after the moon's transit

over that meridian. Hence, when the main tidal wave of the

Pacific reaches that port, the immediate effect of the moon is to

produce low water at the same hour; and the superposition of

these two waves produces a nearly uniform level of*the water.

The occurrence of high water within about two hours of noon

every day seems to indicate that the power of the sun to raise a

tide is here nearly equal to that of the moon. In the Atlantic

Ocean, the influence of the moon upon the tides is generally about

double that of the sun
;
but this ratio appears to be a variable

one.

367. Tides of the Gu2f of Mexico. The Gulf of Mexico is a shal-

low sea, about 800 miles in diameter, almost entirely surrounded

by land, and communicating with the Atlantic by two channels,

each about 100 miles in breadth. It is by the Florida channel

that the tidal wave from the Atlantic is chiefly propagated into

the Gulf, but its progress is so much obstructed by the West In-

dia Islands that its height is very much reduced. Between Flor-

ida and Cuba the tidal wave advances slowly westward
;
but after

passing the channel it moves more rapidly, and reaches the west-

ern side of the Gulf in seven hours, showing an average progress
of 125 miles per hour.

The tides in the Gulf are every where quite small. At Mobile

and Pensacola the average height is only one foot The diurnal

inequality is also quite large, so that at most places (except when
the moon is near the equator) one of the daily tides is well-nigh

inappreciable, and the tide is said to ebb and flow but once in 24

hours.
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368. Tides of the Mediterranean. The tides of the Mediterranean

are generally so small as not to be regarded by navigators. Their

average height does not exceed 18 inches. In the neighborhood

of the Strait of Gibraltar the tide rises from 2 to 4 feet
;
at Venice

it rises from 18 inches to 4 feet; and at Tunis it sometimes rises

to the height of 3 feet.

The length of the Mediterranean is 2400 miles, or nearly one

third the diameter of the earth
;
and the average height of the

tides is here at least one third what it is in the open sea.

369. Tides ofinland seas. In small lakes and seas which do not

communicate with the ocean there is a daily tide, but so small

that it requires the most accurate observations to detect it. The

existence of a tide in Lake Michigan has been proved by a series

of observations made at Chicago in 1859. The average height
of this tide is If inches

;
and the average time of high water is 30

minutes after the time of the moon's transit.

The length of Lake Michigan is 350 miles, or -^d of the earth's

diameter, and its tide is about -^jd of that which prevails in mid-

ocean.

CHAPTER XIY.

THE PLANETS THEIR APPARENT MOTIONS. ELEMENTS OF

THEIR ORBITS.

370. Number, etc., of the planets. The planets are bodies of a

globular form, which revolve around the sun as a common cen-

tre, in orbits which do not differ much from circles. The name

planet is derived from the Greek word TrAavjjrijc, signifying a

wanderer, and was applied by the ancients to these bodies be-

cause their apparent movements were complicated and irregular.
Five of the planets Mercury, Venus, Mars, Jupiter, and Saturn-
are very conspicuous, and have been known from time immemo-
rial. Uranus was discovered in 1781, and Neptune in 1846, mak-

ing eight planets including the earth. Besides these there is a

large group of small planets, called asteroids, situated between the

orbits of Mars and Jupiter. The first of these was discovered in

1801, and the number known in 1877 amounted to 178.
The orbits of Mercury and Venus are included within the orbit
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of the earth, and they are hence called inferior planets, while the

others are called superior planets.

371. The satellites. Some of the planets are the centres of sec-

ondary systems, consisting of smaller globes, revolving round

them in the same manner as they revolve around the sun. These

are called satellites or moons. The primary planets which are thus

attended by satellites carry the satellites with them in their or-

bits around the sun. Of the satellites known at the present time,

two revolve around Mars, four around Jupiter, eight around

Saturn, four around Uranus, and one around Neptune. The
moon is also a satellite to the earth.

372. The orbits of the planets. The orbit of each of the planets
is an ellipse, of which the sun occupies one of the foci. That

point of its orbit at which a planet is nearest the sun is called

the perihelion, and that point at which it is most remote is called

the aphelion.

The eccentricity of a planetary orbit is the distance of the sun

from the centre of the ellipse which the planet describes, expressed
in terms of the semi-major axis regarded as a unit; or, in other

words, it is the quotient of the distance between the centre and

focus, divided by the semi-major axis. The eccentricities of most

of the planetary orbits are so minute that, if the form of the orbit

were exactly delineated on paper, it could not be distinguished
from a circle except by careful measurement.

373. Geocentric and heliocentric places. The motion of a planet
as it appears to an observer on the earth is called the geocentric

motion, while its motion as it would appear if the observer were

transferred to the sun is called its heliocentric motion. The mo-

tions of the planets can not be observed from the sun as a centre,

but from the geocentric motions, combined with the relative dis-

tances of the earth and planet from the sun, we may deduce the

heliocentric motions by the principles of Geometry.
The geocentric place of a body is its place as seen from the cen-

tre of the earth, and the heliocentric place is its place as seen from

the centre of the sun.

374. Elongation, conjunction, and opposition of a planet. The
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angle formed by lines drawn from the earth to the sun and a

planet is called the elongation of the planet from the sun
;
and it

is east or west, according as the planet is on the east or west side

of the sun.

A planet is said to be in conjunction with the sun when it has

the same longitude, being then in nearly the same part of the

heavens with the sun. It is said to be in opposition with the sun

when its longitude differs from that of the sun 180, being then

in the quarter of the heavens opposite to the sun. A planet is

said to be in quadrature when it is distant from the sun 90 in

longitude.

A planet which is in conjunction with the sun passes the me-

ridian about noon, and is therefore above the horizon only dur-

ing the day. A planet which is in opposition with the sun passes

the meridian about midnight, and is therefore above the horizon

during the night A planet which is in quadrature passes the

meridian about 6 o'clock either morning or evening.
An inferior planet is in conjunction with the sun when it is be-

tween the earth and the sun, as well as when it is on the side of

the sun opposite to the earth. The former is called the inferior

conjunction, the latter the superior conjunction.

375. Why the apparent motions of the planets differ from the real

motions. If the planets could be viewed from the sun as a centre,

they would all be seen to advance invariably in the same direc-

tion, viz., from west to east, in planes only slightly inclined to each

other, but with very unequal velocities. Mercury would advance

eastward with a velocity about one third as great as our moon
;

Venus would advance in the same direction with a velocity less

than half that of Mercury; the more distant planets would ad-

vance still more slowly ;
while the motions of Uranus and Nep-

tune would be scarcely appreciable except by comparing observa-

tions made at long intervals of time. None of the planets would
ever appear to move from east to west.

The motions of the planets, as they actually appear to us, are

very unlike those just described, first, because we view them from
a point remote from the centre of their orbits, in consequence of

which the distances of the planets from the earth are subject to

great variations; and, second, because the earth itself is in motion,
and the planets have an apparent motion, resulting from the reaJ

motion of the earth.
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376. The apparent motion ofan inferior planet. In order to de-

duce the apparent motion of an inferior planet from its real mo-

tion, let CKZ represent a portion of the heavens lying in the plane
of the ecliptic ;

let a, b, c, d, etc., be the orbit of the earth
;
and

AE

1, 2, 3, 4, etc., the orbit of Mercury. Let the orbit of Mercury be

divided into 12 equal parts, each of which is described in 7^-

days ;
and let 5, be, cd, etc., be the spaces described by the earth,

in the same time. Suppose Mercury to be at the point 1 in his

orbit when the earth is at the point a; Mercury will then appear
in the heavens at A, in the direction of the line al. In 7^- days

Mercury will have arrived at 2, while the earth has arrived at b,

and therefore Mercury will appear at B. When the earth is at c,

Mercury will appear at C, and so on. By laying the edge of a

ruler on the points c and 3, d and 4, e and 5, and so on, the suc-

cessive apparent places of Mercury in the heavens will be ob-

tained. We thus find that from A to C, his apparent motion is
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from east to west
;
from C to P, his apparent motion is from west

to east
;
from P to T it is from east to west

;
and from T to Z the

apparent motion is from west to east.

377. Direct and retrograde motion. When a planet appears to

move in the direction in which the sun appears to move in the

ecliptic, its apparent motion is said to be direct;, and when it ap-

pears to move in the contrary direction, it is said to be retrograde.

The apparent motion of an inferior planet is always direct, except
within a certain elongation east and west of the inferior conjunc-

tion, when it is retrograde.

If we follow the movements of Mercury during several success-

ive revolutions, we shall find its apparent motion to be such as is

indicated by the arrows in the preceding diagram, viz., while pass-

ing from its greatest western to its greatest eastern elongation, it

appears to move in the same direction as the sun toward P. As
it approaches P its apparent motion eastward becomes gradually

slower, until it stops altogether at P, and becomes stationary. It

then moves westward, returning to T, where it again becomes sta-

tionary, after which it again moves eastward, and continues to

move in that direction through an arc about equal to CP, when
it again becomes stationary. It again moves westward through
an arc about equal to PT, when it again becomes stationary, and
so on. The middle point of the arc of retrogression, PT, is that

at which the planet is in inferior conjunction ;
and the middle

point of the arc of progression, CP, is that at which the planet is

in superior conjunction.
These apparently irregular movements suggested to the an-

cients the name ofplanet, or wanderer.

378. Apparent motion of a superior planet. In order to deduce
the apparent motion of a superior planet from the real motions of

the earth and planet, let S be the place of the sun
; 1, 2, 3, etc., be

the orbit of the earth
; a, i, c, etc., the orbit of Mars

;
and CGL a

part of the starry firmament. Let the orbit of the earth be di-

vided into 12 equal parts, each of which is described in one month
;

and let ab, be, cd, etc., be the spaces described by Mars in the same
time. Suppose the earth to be at the point 1 when Mars is at the

point a, Mars will then appear in the heavens in the direction of
the line 1 a. When the earth is at 3 and Mars at

c,
he will ap-
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Fig. 100.

pear in the heavens at C. When the earth arrives at 4, Mars will

arrive at d, and will appear in the heavens at D. While the earth

moves from 4 to 5 and from 5 to 6, Mars will appear to have ad-

vanced among the stars from D to E and from E to F, in the di-

rection from west to east. During the motion of the earth from

6 to 7 and from 7 to 8, Mars will appear to go backward from F
to G and from G to H, in the direction from east to west. Dur-

ing the motion of the earth from 8 to 9 and from 9 to 10, Mars

will appear to advance from H to I and from I to K, in the di-

rection from west to east, and the motion will continue in the

same direction until near the succeeding opposition.

The apparent motion of a superior planet projected on the heav-

ens is thus seen to be similar to that of an inferior planet, except

that, in the latter case, the retrogression takes place near inferior

conjunction, and in the former it takes place near opposition.
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379. Conditions under which a planet is visible. One or two of

the planets are sometimes seen when the sun is above the hori-

zon
;
but generally, in order to be visible without a telescope, a

planet must have an elongation from the sun greater than 30, so

as to be above the horizon before the commencement of the morn-

ing twilight, or after the close of the evening twilight.

The greatest elongation of the inferior planets never exceeds

47. If they have eastern elongation, they pass the meridian in

the afternoon, and, being visible above the horizon after sunset,

are called evening stars. If they have western elongation, they

pass the meridian in the forenoon, and, being visible above the

eastern horizon before sunrise, are called morning stars.

A superior planet, having every degree of elongation from to

180, may pass the meridian at any hour of the day or night At

opposition the planet passes the meridian at midnight, and is

therefore visible from sunset to sunrise.

d380. Phases of a planet. That hemisphere of a planet which is

presented to the sun is illumined, and the other is dark. But if

the same hemisphere which is turned toward the sun is not also

presented to the earth, the hemisphere of the planet which is pre-

sented to the earth will not be wholly illumined, and the planet
will exhibit phases.

The inferior planets exhibit the same variety of phases as the

moon. At the inferior conjunction, the dark side of the planet is

turned directly toward the earth. Soon afterward the planet ap-

pears a thin crescent, which increases in breadth until the great-

est elongation, when it becomes a half moon. Subsequently its

form becomes gibbous, and at superior conjunction it becomes a

full moon.

The distances of the superior planets from the sun are, with but

one exception, so much greater than that of the earth, that the

hemisphere which is turned toward the earth is sensibly the same
as that turned toward the sun, and these planets always appear full.

381. Elements of the orlit of a planet. There are seven different

quantities necessary to be known in order to compute the place
of a planet for a given time. These are called the Elements of the

orbit. They are,

1. The periodic time.
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2. The mean distance from the sun, or the semi-major axis of

the orbit

3. The longitude of the ascending node.

4. The inclination of the plane of the orbit to that of the eclip-

tic.

5. The eccentricity of the orbit.

6. The longitude of the perihelion.

7. The place of the planet in its orbit at a particular epoch.
If the mass of a planet is either known or neglected, the mean

distance can be computed from the periodic time by means of

Kepler's third law, so that the number of independent elements

is reduced to six.

The orbits of the planets can not be determined in the same

manner as the orbit of the moon, Art. 207, because the centre of

the earth may be regarded as a fixed point relative to the moon's

orbit, but it is not fixed relative to the planetary orbits. The
methods therefore employed for determining the orbits of the

planets are in many respects quite different from those which are

applicable to determining the orbit of the moon, and also that of

the earth.

382. To find the periodic time. First method. Each of the plan-

ets, during about half its revolution around the sun, is found to

be on one side of the ecliptic, and during the other half on the

other side. The period which elapses from the time that a planet
is at one of its nodes, till it returns to the same node (allowance

being made for the motion of the nodes), is the sidereal period of

the planet. When a planet is at either of its nodes, it is in the

plane of the ecliptic, and its latitude is then nothing. Let the

right ascension and declination of a planet be observed on several

successive days, near the period when it is passing a node, and let

its corresponding longitudes and latitudes be computed. From
these we may obtain, by a proportion, the time when the planet's

latitude is nothing. If similar observations are made when the

planet passes the same node again, we shall have the time of a

revolution.

Example. The planet Mars was observed to pass its ascending

node as follows :

1862, December, 5d. 22h. 17m.

1864, October, 22d. 21h. 58m.
'
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The interval is 686.986 days, which differs but a few minutes

from the most accurate determination of its period.

When the orbit of a planet is but slightly inclined to the eclip-

tic, a small error in the observations has a great influence on the

computed time of crossing the ecliptic. A more accurate result

will be obtained by employing observations separated by a long

interval, and dividing this interval by the number of revolutions

of the planet

383. Second method. The synodical period of a planet is the in-

terval between two consecutive oppositions, or two conjunctions

of the same kind. The sidereal period may be deduced from

the synodical by a method similar to that of Art 205. Let p be

the sidereal period of a planet, p' the sidereal period of the earth,

and s the time of a synodic revolution, all expressed in mean solar

days. The daily motion of the planet, as seen from the sun, is

,
while that of the earth is

;
and ifp be a superior planet,

360 360
the earth will gain upon the planet daily

-

f
. But in a

synodic revolution the earth gains upon the planet 360 ; that is,

its daily gain is . Hence we have the equation

360 360_360
p' p

~
s

'

Hence sps2)'=pp'1

or p= -..

s-p'
For an inferior planet, we shall find in like manner

p
~7+fi'

384 How to obtain the mean synodic period. Since the angular
motion of the planets is not uniform, the interval between two

successive oppositions will not generally give the mean synodical

period. But if we take two oppositions, separated by a long in-

terval, when the planet was found in the same position relatively

to some fixed star, and divide the interval by the number of rev-

olutions, we may obtain the mean synodical period very accu-

rately.
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Example. The planet Mars was observed in opposition as fol-

lows:

1864, November, 30d. 17h. 58m.

1817, December, 8d. 9h. 15m.

The interval is 17159.37 days, which divided by 22, the num-
ber of synodic revolutions, gives for the mean time of one sy-

nodic revolution 779.97 days. By comparing the observations

of Ptolemy, A.D. 130, with recent observations, the time of one

synodical revolution is found to be 779.936 days; from which,

according to the formula given above, the mean sidereal period
of Mars is found to be 686.980 days. And in the same manner
the periods of the other planets may be found.

The following table shows the time of a synodical, as well as

of a sidereal revolution of the planets :
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the orbit, and thus obtain its average value. The average value

of the greatest elongation ofVenus is 46 20'; whence the mean

distance of Venus is found to be .7233, the distance of the earth

from the sun being called unity.

886. Distance of a superior planet. The distance of a superior

planet, whose periodic time is known, may be found by measur-

Fig. 102. ing the retrograde motion of the

planet in one day at the time of

opposition. Let S be the place
of the sun, E the earth, and M the planet on the day of opposi-

tion, when the three bodies are situated in the same straight line.

Let EE' represent the earth's motion in one day from opposition,

and MM' that of the planet in the same time. The angles ESE'
and MSM' are known from the periodic times. Draw E'B par-

allel to SM
; join E'M', and produce the line to meet SM in A.

The angle SAE', which equals AE'B, is the retrogradation of the

planet in one day, and is supposed to be known from observa-

tions. In the triangle E'SM', the side E'S and the angle E'SM'
are known, and E'M'S=M'SA+M'AS; from these we can com-

pute SM'.

If we only know the periodic time of the planet, we are obliged,
in the first approximation, to assume the orbit to be a circle in

order to compute the angle MSM' ;
but if we observe the retro-

grade motion at a large number of oppositions in different parts
of the orbit, we may obtain the average value of the arc of retro-

gradation, and hence we may compute the mean distance.

Example. The average arc of retrogradation of Mars on the day
of opposition is 21' 25".7. If we take the mean daily motions of

the earth and Mars, as given on page 207, we shall find the mean

distance of Mars to be *'^',^' =1.52369, the distance of the
sin. o2 52"A

earth from the sun being called unity.

The following table shows the mean distances of the planets
from the sun, expressed in miles, and also their relative distances,

the distance of the earth being called unity :
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Fig. 103. planet has made an entire revolution,

and returned to the point P. Then
from the solar tables we can determine

(t
SE and SE', as also the angle ESE'.

Hence EE' can be computed, as also

the angles SEE', SE'B. Now, since

the angles SEP, SET are determined

by the observations, we can obtain the

angles PEE', PE'E. Then, in the tri-

angle PEE', having two angles and one

side, we can compute PE. Hence, in

the triangle PES, we have two sides

and the included angle, from which we can compute SP, and also

the angle ESP, which, added to the longitude of the earth when
at E, will give the heliocentric longitude of the planet when at its

node.

When observations of this kind are made at a considerable dis-

tance of time from one another, it is found that the nodes of every

planet have.a slow motion retrograde, or in a direction contrary
to the order of the signs. The most rapid motion of the nodes is

in the case of Mercury, amounting to about 70' in a century.

389. To determine the inclination of an orbit to the ecliptic. Let

the time at which the sun's longitude is the same
as the heliocentric longitude of the node be found

by means of the solar tables, and let the longitude
and latitude of the planet be determined at the

same time.

Let NSE be the line of a planet's nodes, S the

sun, E the earth, and P the planet's place in its

orbit. From E as a centre, with a radius PE,

suppose a sphere to be described whose surface

meets the line NE in B
;
and let PA be an arc of

a great circle perpendicular to the ecliptic. Then PBA will be

a spherical triangle right-angled at A; the angle PBA will

measure the inclination of the plane of the planet's orbit to the

ecliptic ;
PA will measure PEA, the geocentric latitude of the

planet; and AB will measure AEB, the difference between the

longitudes of the sun and planet.

Then, by Napier's rule, we have
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E x sin. AB = tang. PA cot. PBA
;

that is, tangent ofinclination equals the tangent of the planet's geocen-
tric latitude, divided by the sine of the difference between the longitudes

of the sun and planet, the earth being in the line of the planet's
nodes. If, at the time of observation, the elongation of the plan-
et from the sun was 90, its geocentric latitude would be the incli-

nation of its orbit to the ecliptic; and the results of this method
will be the more reliable the farther the planet is from its node.

The orbits of the planets have generally small inclinations to

the ecliptic. The orbit of Mercury is inclined about 7, while all

the other planets (with the exception of the asteroids) are inclined

less than 4. Four of the asteroids have inclinations exceeding

20, and one has an inclination of 34.

390. To determine the heliocentric longitude and latitude ofa planet.

When the place of the ascending node and the inclination of

the orbit of a planet are known, the heliocentric longitude and

latitude of a planet, and also its radius vector, may be deduced

from the geocentric longitude and latitude.

Let S be the place of the sun, E Fig 105.

the earth, P the planet, and NS the

line of the nodes of the planet's or-

bit. From P draw PB perpendicu-
lar to the ecliptic, and let a plane

pnss through E, P, and B, intersect-

ing the line of the nodes in N. With
N as a centre, and NE as a radius,

r

let a sphere be described, cutting the planes PNS, ENS, and

PNE in the right-angled spherical triangle AEG. The angle

PEB will be the geocentric latitude of the planet, BBS will be

the difference between the longitudes of the planet and sun, and

the spherical angle ACE will measure the inclination of the

planet's orbit to the ecliptic.

1st. In the triangle NES, the angle NES is known, being the

supplement of BES
;
also ESN can be derived from the solar ta-

bles when the place of the node is given, and ES is also known
;

hence we can compute EN, NS, and the angle ENS.

2d. In the spherical triangle AEC, right-angled at E, the angle
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ACE is given, and also EC, which measures ENC
;
hence AE,

which measures ANE, can be computed.
3d. In the triangle PNE, we know NE, ENP, and NEP, the

supplement of the planet's geocentric latitude
;
hence PN can be

computed.
4th. In the right-angled triangle NPB, we knpw NP and the

angle PNB ;
hence PB and NB can be computed.

5th. In the triangle BNS, NB, NS, and the angle BNS are

known
;
hence we can compute SB and NSB, which is the differ

ence between the heliocentric longitude of the planet and that of

its node. Hence the heliocentric longitude of the planet is d^j

termined.

6th. In the right-angled triangle PBS, we know PB and BS,
from which we can compute the angle PSB, the planet's heliocen-

tric latitude, and also PS, its distance from the sun.

391. To determine the longitude of the perihelion, the eccentricity,

etc. Assuming the orbit of the planet to be an ellipse, if we de-

termine, by Art. 390 or Art. 388, the length and position of three

radii vectores of the planet, we can determine the form and di-

mensions of tbe ellipse.

Let SB, SC, SD be three radii vec-

tores of the planet, given in length and

position. Draw the lines BC, BD, and

produce them, making SB : SD : : BF :

DF
;
and SB : SC : : BE : CE

;
then

SB-SD: SB:: BD : BF=

and

SB-SC: SB :: BC: BE=

IFK H G Then the straight line passing through
the points E and F will be the directrix of the ellipse. For BH,

CI, DK being drawn perpendicular to EF, the triangles BEH,
CEI are similar

;
therefore BH : CI : : BE : CE. Now, by con-

struction, BE : CE : : SB : SC; hence BH : CI : : SB : SC; or BH :

SB :: CI : SC; also BH : DK : : BF : DF : : SB : SD. There-

fore the perpendiculars BH, CI, DK are always in the same pro-

portion as the lines SB, SC, SD ; consequently, EF is the directrix

of the ellipse, passing through B, C, and D. (Greom., Ellipse, Prop.

Fig. 100.
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22.) Through S draw ASG perpendicular to FE
;
take GA : AS

:: CI : CS,and GP : SP :: CI : CS; then CI+CS : CS :: GS SP=
SCxSG , AC SCxSG .

>
and Ab=

;
then A and P will be the vertices

of the ellipse.

The lengths of SP and SA can accordingly be computed ;
their

sum gives the major axis
;
and their difference, MS, divided by

the major axis, is the eccentricity of the ellipse. Also, in the tri-

angle BSM, we know BS, SM, and BM=PA-SB; whence the

angle BSA is determined, which gives the position of the major
axis relatively to SB.

CHAPTER XV.

THE INFERIOR PLANETS, MERCURY AND VENUS. TRANSITS.

392. Greatest elongations of Mercury and Venus. Mercury and

Venus having their orbits far within that of the earth, their elon-

gation or angular distance from the sun is never great. They
appear to accompany the sun, being seen in the west soon after

sunset, or in the east a little before sunrise.

Let S be the place of the sun, MA the orbit of

Mercury, E the place of the earth, and M the place

of the planet when at its greatest elongation, at

which time the angle EMS is a right angle. Since

the distances of the planet and the earth from the

sun both vary, the greatest elongation must also

vary. The elongation will be the greatest possi-

ble when SM is greatest and SE is the least
;
that

is, when Mercury is at its aphelion and the earth

at perihelion. Combining the greatest value of

SM with the least value of SE, we find the greatest possible value

of Mercury's greatest elongation to be 28 20'; but in the present

position of the major axis of Mercury's orbit, its elongation can

not exceed 27 47', and the least value of its greatest elongation

is 17 51'.

The greatest elongation of Venus varies from 45 20' to 47 17".

393. Phases of Mercury and Venus. The planets Mercury and
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Venus exhibit to the telescope phases similar to those of the

moon. At the greatest elongations eastward or westward, we see

only half the disc illuminated, as in the case of our own satellite

Fig. 108.

at first or last quarter. As they move toward the superior con-

junction, at A, their form becomes gibbous, and the outline, of the

disc becomes more nearly circular the nearer they approach the

superior conjunction. Owing to the intensity of the sun's light,

we lose the planets for a little time before and after the conjunc-

tion, but on emerging from the sun's rays we find the form still

gibbous. The illumined part diminishes as the planets approach
their greatest elongation, near which time they again appear as

a half moon
;
and as they advance toward the inferior conjunc-

tion, the form becomes more nearly that of a crescent, until it is

again lost in the sun's rays at C.

MERCURY.

394. Period, distance from sun, etc. Mercury performs its revo-

lution round the sun in a little less than three months; but its syn-
odic period, or the time from one inferior conjunction to another,

is 116 days. Its mean distance from the sun is 37 millions of miles.

The eccentricity of its orbit is much greater than in the case

of any other of the large planets. At perihelion Mercury is only
29 millions of miles from the sun, while in aphelion it is distant

44 millions, making a variation of 15 millions of miles, which is

about one fifth of the major axis of the orbit.

When between the earth and the sun, the disc of this planet

subtends an angle of about twelve seconds of arc
;
but as the

planet approaches the opposite part of the orbit, its breadth does

not exceed five seconds. The real diameter of Mercury is about

3000 miles.
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395. Visibility of Mercury. Since tbe elongation of Mercury
from tbe sun never exceeds 27 47', this planet is seldom seen

except in strong twilight; and it does not ever appear conspicu-
ous to the naked eye, although it often appears as brilliant as a

star of the first magnitude equally near to the sun. Supposing
the atmosphere to be clear, the other circumstances that favor the

visibility of the planet are, 1st, the greatest elongation should occur

at that season of the year when the twilight is shortest; 2d, the

planet should then be near the aphelion of its orbit; and, 3rd, the

planet should be near its greatest distance from the ecliptic on

the north side. Unfortunately the position of Mercury's orbit is

such that when the elongation is the greatest possible the planet
is south of the sun, and the circumstances are not as favorable for

observation as when the planet has a less elongation but is north of

the sun. Generally the winter months afford the most favorable

opportunity for seeing Mercury, but in the United States the planet
can be seen by the naked eye at any season of the year provided
the observer knows exactly where and when to look for it.

396. Greatest brightness. Mercury does not appear most brill-

iant when near superior conjunction, because its distance is then

too great; nor when it is near inferior conjunction, because the

illuminated part which is visible to us is then very small. The

place of greatest brightness must lie between inferior and superior

conjunction. This point is found to be near the greatest elonga-

tion, and is between the greatest elongation and superior conjunc-

tion. When the planet is seen after sunset, the greatest bright-

ness occurs a few days before the greatest elongation; but when

it is seen before sunrise, the greatest brightness occurs a few days

after the greatest elongation.

397. Rotation on its axis. Some astronomers think they have

discovered evidence of high mountains on the surface of Mercury,

and they claim to have seen dark streaks and spots from whose

motion they have concluded that the planet has a rotation upon
its axis in about 24h. But these observations are extremely dif-

ficult, and the conclusions are considered doubtful.

VENUS.

398. Yenus, the most brilliant of the planets, is generally called
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the evening or the morning star. The evening and morning star,

or the Hesperus and Phosphorus of the Greeks, were at first sup-

posed to be different. The discovery that they are the same is

ascribed to Pythagoras.

399. Period, distance, and diameter. Venus revolves round the

sun in about 7 months
;
but its synodic period, or the time from

one inferior conjunction to another, is 584 days, or about 19

months. Its mean distance from the sun is 69 millions of miles
;

and since the eccentricity of its orbit is very small, this distance

is subject to but slight variation.

The apparent diameter of Venus varies much more sensibly

than that of Mercury, owing to the greater variation of its distance

from the earth. At inferior conjunction its disc subtends an an-

gle of about 64 seconds of arc, while at superior conjunction it is

less than 10 seconds. The real diameter of Venus is about 7700

miles, or nearly the same as that of the earth.

400. Venus sometimes visible during the full light of day. The

greatest elongation of Venus from the sun amounts to 47, and,

on account of its proximity to the earth, it is, next to the sun and

moon, the most conspicuous and beautiful object in the firma-

ment. When it rises before the sun, it is called the morning star
;

when it sets after the sun, it is called the evening star. When
most brilliant, it can be distinctly seen at midday by the naked

eye, especially if at the time it is near its greatest north latitude.

Its brightness is greatest about 36 days before and after inferior

conjunction, its elongation being then about 40, and the enlight-

ened part of the disc not over a fourth part of the whole. At
these periods the light is so great that objects illumined by it at

night cast perceptible shadows.

401. Rotation on an axis. Astronomers have frequently seen

dusky spots upon Venus, which have been watched with the view

of ascertaining the time of a rotation. It is concluded that this

time is about 23h. 21m.
;
but these observations are exceedingly

difficult on account of the glaring light of the planet.

402. Twilight on Venus. By observing the concave edge of the

crescent, which corresponds to the boundary of the illuminated
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and dark hemispheres, it is found that there is a gradual fading
away of the light into the darkness, caused probably by an at-

mosphere illuminated by the sun and producing the phenomena
of twilight

403. Suspected satellite. Several observers of the last two cen-

turies concurred in maintaining that they had seen a satellite of
Venus. But Sir W. Herschel perceived no traces of a satellite;
neither did Schroter, though he was most assiduous in his obser-

vations of Venus. It is therefore probable that the supposed ap-

pearances recorded by former observers were illusive.

TRANSITS OF MERCURY AND VENUS.

404. When either Mercury or Venus, being in inferior conjunc-
tion, has a distance from the ecliptic less than the sun's semi-di-

ameter, it will appear projected upon the sun's disc as a black
round spot. The apparent motion of the planet being then retro-

grade, it will appear to move across the disc of the sun from east

to west, in a line sensibly parallel to the ecliptic. Such a phe-
nomenon is called a transit of the planet.

405. When transits are possible. Transits can only take place
when the planet is within a small distance of its node. Let 1ST be

the node of the planet's orbit
;
S the Fig. 100.

centre of the sun's disc on the eclip- 33"-

tic, and at such a distance from the

node that the edge of the disc just touches the orbit, NP, of the

planet. A transit can only take place when the sun's centre is

at a less distance than NS from the node. The mean value of

the sun's semi-diameter being 16', and the inclination of Mercury's
orbit to the ecliptic being 7, and that of Venus 3^-, we find that

a transit of Mercury can only take place within 2 11' of the

node, and a transit of Venus within 4 30'.

406. Transits of Mercury. The longitudes of Mercury's nodes

are about 46 and 226, at which points the earth arrives about

the 10th of November and the 7th of May. The transits of Mer-

cury must therefore occur near these dates
;
those at the ascend-

ing node taking place in November, and those at the descending

node in May.
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The following are the dates of the transits of Mercury for the

remainder of the present century :

1868, November 4.

1878, May 6.

1881, November 7.

1891, May 9.

1894, November 10.

407. Intervals between the 'transits. In each of these cases the

interval between two transits at the same node is 13 years. The
reason is that 13 revolutions of the earth are made in nearly the

same time as 54 revolutions of Mercury.
For 365.256 x 13=4748.33.

And 87.9692 x 54=4750.34

When, therefore, a transit has occurred at one node, after an in-

terval of 13 years, the earth and Mercury will return to nearly the

same relative situation in the heavens, and another transit may
occur. Transits sometimes occur at the same node at intervals

of 7 years, and a transit at either node is generally preceded or

followed, at an interval of 3 years, by one at the other node.

408. Transits of Venus. The longitudes of the nodes of Venus

are about 75 and 255, at which points the earth arrives about

the 5th ofJune and the 7th of December. The transits of Venus

must therefore occur near these dates
;
those at the descending

node taking place in June, and those at the ascending node in

^December.

The following list contains all the transits of Venus, from that

which took place in 1639 (the first that was ever known to have

been seen by any human being) to the end of the present century :

1639, December 4.

1761, June 5.

1769, June 3.

1874, December 8.

1882, December

409. Intervals between the transits. The interval between two

transits at the same node is either 8 or 235 years. The reason

of the first interval is that 8 revolutions of the earth are accom-

plished in nearly the same time as 13 revolutions of Venus.

For 365.256 x 8= 2922.05.

And 224.701 x 13 = 2921.11.

Hence a transit at either node is generally preceded or followed,

at an interval of 8 years, by another at the same node.
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The period of 235 years is still more remarkable.
For 365.256x235=85835.3.
And 224701x382=85835.7.

Hence, after an interval of 235 years, during which time Venus
has made 382 revolutions, the earth and Venus return almost ex-

actly to the same relative situation in the heavens.

410. Sun's parallax and distance. The transits of Venus are

important from their supplying data by which the sun's distance

from the earth can be determined with far greater precision than

by any other known method. The transits of Mercury supply
similar data, but much less reliable, on account of the greater dis-

tance of that planet from the earth.

The relative distances of the planets from the sun may be com-

puted by Kepler's third law, when we know their periods of rev-

olution. In this manner we ascertain that the distances of the

earth and Venus from the sun are in the ratio of 1000 to 723.

Hence, when Venus is interposed between the earth and sun, the

ratio of its distances from the earth and sun is that of 277 to

723.

Fig. 110.

Let the circle FHKG represent the sun's disc
;

let E represent
the earth, and A and B the places of two observers supposed to

be situated at the opposite extremities of that diameter of the

earth which is perpendicular to the ecliptic; also, let V be Venus

moving in its orbit in the direction represented by the arrow. At

present we will disregard the earth's rotation
;
that is, we will

suppose the positions A and B to remain fixed during the transit

The planet will then appear to the observer at A to describe the

chord FG, and to the observer at B the parallel chord HK. Also,

when to the observer at A the centre of the planet appears to be

at D, it will to the observer at B appear to be at C.

Now AB was supposed to be perpendicular to the plane of the

ecliptic ;
and since the plane of the sun's disc is also very nearly



220 ASTRONOMY.

perpendicular to the ecliptic, the line AB may be regarded as par-

allel to CD, and hence we have

CD : AB : : DV : AV : : 723 : 277 : : 2.61 : 1.

Therefore CD (expressed in miles)= 2.61 AB.
The apparent distance between the points C and D on the sun's

surface may be derived from the observed times of beginning and

ending of the transit at A and B. Let the observer at A note

Fig. in. the time when the disc of the planet
first appears to touch the sun's disc on

the outside at L, and also the time when
it first appears at M wholly within the

sun's disc. L is called the external, and

M the internal contact. Also, let both

the internal and external contacts at N
and P be observed when the planet is

leaving the sun's disc. Then, since the

planet's rate of motion as well as that of the sun is already accu-

rately known from the tables, the number of seconds of a degree
in the chord described by the planet can be ascertained. In the

same manner, the number ofseconds in the chord described by the

planet as observed at B can be ascertained. Knowing the length

of DG, which is the half of FG, and knowing also SG, the apparent
radius of the sun, we can compute SD. In the same manner, from

the length of the chord HK, we can compute SC. The difference

between these lines is the value of CD, supposed to be expressed
in seconds. But we have already ascertained the value of CD in

miles. Hence we can determine the linear value of 1" at the sun

as seen from the earth, which is found to be 462 miles
;
and hence

the angle which the earth's radius subtends at the sun will be

3963
^, or 8".58. This angle is called the sun's horizontalparallax ;

462

and from it, when we know the radius of the earth, we can com-

pute the distance of the earth from the sun.

It is not necessary that the observers should be situated at the

extremities of a diameter of the earth, but it is important that

the two stations should differ widely in latitude; and allowance

must also be made for the diurnal motion of the earth.

The transit of Venus in 1769 was observed with the greatest

care at a large number of stations, extending from Lapland, lati-

tude 70 22' K, to Otaheite, latitude 17 25' S., and the value of
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the sun's parallax resulting from these observations (8".58) is that

which, until recently, has generally been accepted by astronomers.

The mean distance of the earth from the sun, resulting from
this value of the sun's parallax, is 95,300,000 miles. An accu-

rate knowledge of this distance is of the greatest importance,
since it serves as our base line for estimating the distances of all

bodies situated beyond the limits of our solar system. See Art.

551. As there is still some uncertainty respecting the exact

value of this quantity, astronomers generally call the mean dis-

tance of the earth from the sun unity, and estimate all distances in

the planetary system by reference to this unit.

411. Other determinations of the sun's parallax. When Mars is

on the same side of the sun with the earth, it approaches com-

paratively near to the earth, and has a large horizontal parallax.

Observations on the position of Mars have repeatedly been made
at various observatories, both in the northern and southern hemi-

spheres, from which the parallax of this planet has been deduced;
and hence the parallax of the sun is easily computed, since the

relative distances of the earth and Mars from the sun may be de-

termined from the times of revolution. The horizontal parallax of

the sun which has been deduced from these observations is 8".8o.

The transit of Venus, which occurred December 8, 1874, was

observed with the greatest care at a large number of stations both

in the northern and southern hemispheres. The final result,

which will be obtained by a comparison of all these observations,

is not yet determined, but a partial comparison indicates a par-

allax of S".S5. There can be no doubt that the value of the

sun's parallax deduced from the transit of Venus in 1769 will

require to be somewhat increased.

CHAPTER XVI.

THE SUPERIOR PLANETS. THEIR SATELLITES.

412. How the superior planets are distinguishedfrom the inferior.

The superior planets, revolving in orbits without that of the

earth, never come between us and the sun that is, they have no

inferior conjunction; but they are seen in superior conjunction

and in opposition. Nor do they exhibit to us phases like those
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of Mercury and Ycnus. The disc of Mars, about the period of hia

quadratures, appears decidedly gibbous ;
but the other planets are

so distant that their enlightened surfaces are always turned al-

most entirely toward the earth, and the gibbous form is not per-

ceptible.

MARS.

413. Distance, period, etc. The mean distance of Mars from the

sun is 145 millions of miles
; but, on account of the eccentricity

of its orbit, this distance is subject to a variation of nearly one

tenth its entire amount. Its greatest distance from the sun is 158

millions of miles, and its least distance 132 millions.

The distance of this planet from the earth at opposition is some-

times reduced to 35 millions of miles, while at conjunction it is

sometimes as great as 255 millions. Its apparent diameter varies

in the same ratio, viz., 3" to 24".

Mars makes one revolution about the sun in 687 days ;
but its

synodic period, or the interval from opposition to opposition, is

780 days. The inclination of its orbit to the plane of the ecliptic

is 1 51'.

The real diameter of this planet is 4500 miles, and its volume

about one fifth that of the earth.

414. Phases, rotation, etc. At opposition and conjunction, the

same hemisphere being turned to the earth and sun, the planet

Fi& 112. ^- O- -^ appears like a full moon, as

shown at Ml and M5. In

all other positions it appears

slightly gibbous ;
but the de-

ficient portion never exceeds

about one ninth of a hemi-

sphere.
When viewed with a good

telescope, the surface of Mars

presents outlines of what are

supposed to be continents and

seas; and by observing these

marks, the planet has been

found to make a rotation upon its axis in 24h. 37m., and its axis

is inclined to the axis of its orbit about 29.
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Hence the days and nights on Mars are nearly of the same

length as on the earth; the year is diversified by seasons; and
the surface of the planet by climates, not very different from those

which prevail on our own globe.

415. Spheroidal form, There is a sensible difference between
the equatorial and polar diameters of Mars, amounting, according
to some astronomers, to one fiftieth, and, according to others, to

one thirty-ninth of the equatorial diameter. This is much greater
than corresponds to the figure of equilibrium of a liquid planet

making one rotation in 24h. 37m.

416.. Telescopic appearance. Many of the spots on this planet
retain the same forms, with the same varieties of light and shade,

even at the most distant intervals of time. But about the polar

regions are sometimes seen white spots, with a well-defined out-

line, which undergo important changes from one season to anoth-

er, and which may be explained by supposing them to proceed
from polar snows, accumulated during the long winter, and which

are partially dissolved during the equally protracted summer.

417. Color. Mars exhibits extensive dusky spots of a dull red

hue, which are believed to be continents, and their color indicates

a reddish tint in the soil like the red sandstone districts of the

earth. Other portions of the planet are of a greenish hue, and are

believed to be tracts of water. The red color is more decided

than the green, and gives a general ruddy appearance to the disc.

418. Satellites. In 1877 two satellites of Mars were discovered

at the Washington Observatory. The distance of the outer sat-

ellite from the centre of Mars is 14,600 miles, and its time of

revolution is 30b. 18m. The distance of the inner satellite is

5850 miles, and its time of revolution is 7h. 39m. Both ob-

jects are extremely faint, and are probably less than ten miles in

diameter.

419. Sun's parallax. From a comparison of numerous obser-

vations of Mars when near opposition in 1862, the parallax of

that planet was determined, and hence the sun's parallax was

computed to be 8".85, which is a little greater than that deduced

from the transits of Venus.
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THE MINOR PLANETS, OR ASTEROIDS.

420. A deficient planei between Mars and Jupiter. Nearly three

centuries ago Kepler pointed out something like a regular pro-

gression in the distances of the planets as far as Mars, which was

broken in the case of Jupiter.

In 1772, Professor Bode announced the singular relation be-

tween the distances of the planets from the sun, which has since

been known as Bode's law. This law is as follows : If we set

down the number 4 several times in a row, and to the second 4

add 3, to the third 4 add twice 3 or 6, to the next 4 add twice 6

or 12, and so on, the resulting numbers will represent nearly the

relative distances of the planets from the sun. This law clearly

indicated a deficient planet between Mars and Jupiter; and an

association of astronomers was formed for the special purpose of

searching for this unknown body.
On the 1st of January, 1801, Piazzi discovered the planet Ceres,

and its distance was found to correspond very nearly with that

required by Bode's law.

In 1802, Dr. Olbers, in searching for Ceres, discovered another

planet, whose orbit was found to have nearly the same dimen-

sions as that of Cerea This planet was called Pallas.

On account of the close resemblance in appearance between

these small planets and the fixed stars, Herschel proposed to des-

ignate them by the name Asteroid a term which has been very

extensively adopted. Some astronomers employ the term Plan-

ttoid ; but the term minor planet is more descriptive, and is now
in common use among astronomers.

421 Oilers's hypothesis respecting the origin of the asteroids. Dr.

Olbers immediately advanced the hypothesis that a single planet

formerly existed between Mars and Jupiter that it was broken

into fragments by volcanic action or by some internal force

that Ceres and Pallas were two of its fragments and that prob-

ably other fragments existed, some of which might hereafter be

discovered.

In 1804, Professor Harding discovered another planet, whose

mean distance was found to be nearly the same as that of Ceres

and Pallas. This planet was named Juno.

In 1807, Dr. Olbers discovered still another planet, whose orbit
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was found to be analogous to those of Ceres, Pallas, and Juno.
This planet was named Vesta.

422. Number of the asteroids. The search for planets was pros-
ecuted till 1816 without farther success, when it was discontin-

ued
;
but in 1845, Hencke, a Prussian observer, having resumed

the search, discovered another small planet, which has been named
Astraea. Since that time the progress of discovery has been as-

tonishingly rapid, the total number of asteroids known in 1879

amounting to 209. Of these, 60 were discovered in France, 50 in

Germany, 19 in Great Britain and its colonies, 67 in America,
and 11 in Italy. These bodies are all extremely minute, the

largest of them probably not exceeding 300 miles in diameter.

vesta is the only one among them which is ever visible to the

naked eye, and this only under the most favorable circumstances.

423. Brightness of the asteroids. The asteroids closely resemble

small stars, and can only be distinguished from fixed stars by their

motion. One of them, when near the opposition, is of the sixth

magnitude ;
two are of the seventh magnitude ;

five of the eighth ;

nineteen of the ninth; fifty-four of the tenth; seventy-seven of the

eleventh; forty-five of the twelfth
;
and five of the thirteenth mag-

nitude. Many of them can be seen only near the opposition, even

by the largest telescopes. The reason that no asteroids were dis-

covered for so long a period after 1807 was that the search was

conducted with too little system, and with inadequate instruments.

424. Distance of the asteroids. The average distance of the 209

asteroids from the sun is 2.739, or 260 millions of miles; but their

distances differ widely from each other. The asteroid nearest to

the sun is Flora, with a mean distance of 209 millions of miles
;

the asteroid most remote from the sun is Hilda, with a mean dis-

tance of 375 millions of miles. The orbit of Flora is therefore

nearer to that of Mars than to that of Hilda.

425. Total number of the asteroids. It is probable that there is a

multitude of asteroids yet remaining to be discovered. From an

examination of the influences exerted by the group of asteroids

upon the planet Mars, Le Verrier has concluded that the entire

mass of the asteroids between Mars and Jupiter may amount to

P
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one third part of the mass of the earth. Now it would require

over 500 bodies as large as the largest of the asteroids to make a

body one third of the size of the earth
; and, since many of the

asteroids are extremely minute, their number probably amounts

to many thousands.

426. Is Oilers 's hypothesis admissible ? The hypothesis of 01-

bers has lost most of its plausibility since the discovery of so

many asteroids. If these bodies ever composed a single planet,

which burst into fragments, then, since the orbits all started from

a common point, each must return to the same point in every rev-

olution
;

in other words, all the orbits should have a common

point of intersection. Such, however, is far from being the case.

The orbits are spread over a large extent, and the smallest known
orbit is every where distant from the largest by at least 50 mill-

ions of miles.

427. What loas the origin of the asteroid system ? These bodies,

however, exhibit striking resemblances, which point to some pe-

culiar relationship. If we represent all the orbits under the form

of material hoops, or rings, these rings are so interlocked as to

hang together as one system, so that if we take hold of any one

of the rings, we shall lift all the others with it. This feature dis-

tinguishes the asteroid orbits from all the other orbits of the solar

system. It has been conjectured that all the planets once existed

in the condition of gaseous matter, which gradually solidified into

spherical masses. If such were the case, it is conceivable that the

same causes which determined the gaseous matter, once occupy-

ing an immense space in the heavens, to collect into a single body
and form a large planet, like Jupiter, should, in another part of

space, have produced a division into an immense number of small

masses, each of which solidified separate!}
7

,
thus forming the group

of asteroids.

428. Are there asteroids within the orbit of Mercury? The study
of the motions of the planet Mercury has led Le Verrier to the

conclusion that within the orbit of Mercury there exists either an

undiscovered planet, whose mass is nearly equal to that of Mer-

cury, or else a ring of minute planets with the same aggregate
mass. The latter supposition is regarded as the most probable.
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since a bright planet nearly equal in size to that ofMercury ought
certainly to have been visible during total eclipses of the sun.

JUPITER.

429. Distance, period, etc. The mean distance of Jupiter from
the sun is 496 millions of miles

; and, since the eccentricity of its

orbit is about -^th, this distance is augmented in aphelion, and
diminished in perihelion by 24 millions of miles. On account of

its distance from the sun being so much greater than that of the

earth, Jupiter has no sensible phases.

Jupiter makes one revolution about the sun in 11-g- years; and
the time from one opposition to another is 399 days.

430. Diameter. Jupiter is the largest of the planets, its volume

exceeding the sum of all the others. Its equatorial diameter is

92,000 miles, or 11 times that of the earth
;
and its volume is

1400 times that of the earth. Its apparent diameter varies from

30" to 48". When near opposition, Jupiter is a more conspicu-
ous object in the heavens than any other planet except Venus,
and is easily seen in the presence of a strong twilight

431. Rotation on an axis, spheroidal form. Permanent marks

have been occasionally seen on Jupiter's disc, by means of which

its rotation has been distinctly proved. The time of one rotation

is 9h. 55|m. A particle at the equator of Jupiter must therefore

move with a velocity of more than 450 miles per minute, or 27

times as fast as a place on the terrestrial equator.

The Jovian day is less than half the terrestrial day ;
and since

the period of Jupiter is 4332 terrestrial days, it consists of 10,485

Jovian days.

Jupiter's equator is but slightly inclined to the plane of its or-

bit, and hence the difference between the length of the days in

summer and winter is very small
;
and the change of temperature

with the seasons is also small.

The disc of Jupiter is oval, the polar diameter being to the equa-

torial as 16 to 17. This oblateness is found by computation to be

the same as would be produced upon a liquid globe, making one

rotation in about 10 hours.

432. Belts of Jupiter. When viewed with a good telescope,
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Jupiter's disc exhibits a light yellowish color, having a series of

brownish-gray streaks, called belts, running nearly parallel to the

equator of the planet Two belts are generally most conspicu-

ous, one north and the other south of the equator, separated by a

bright yellow zone. These belts are commonly visible, without

much change of form, during an entire rotation of the planet. Oc-

casionally one of the belts appears broken sharply off, presenting
an extremity so well defined as to afford the means of determin-

ing the time of the planet's rotation.

Near the poles the streaks are more faint, narrower, and less

regular, and can only be seen with good telescopes. All the belts

become less distinct toward the eastern or western limb, and dis-

appear altogether at the limb itself. These belts, although toler-

ably permanent, are subject to slow but decisive variations, so

that, after the lapse of some months, the appearance of the disc is

totally changed.

433. Cause of the belts. From long-continued observations, it is

inferred that Jupiter is surrounded by an atmosphere which is

continually charged with vast masses of clouds, which almost com-

pletely conceal the surface of the planet, and that these clouds

have a permanence of form and position much greater than exists

in terrestrial clouds.

The brightest portion of Jupiter's disc probably consists of

dense clouds which reflect the light of the sun, while the darker

spots and streaks are portions of the atmosphere, either free from

clouds, and showing the surface of the planet more or less dis-

tinctly, or they are clouds of inferior reflecting power.
The distribution of the clouds in lines parallel to the equator

is probably due to the prevalence of atmospheric currents, analo-

gous to the trade winds, and arising from a like cause, but having
a constancy and intensity far greater than prevail on the earth,

on account of the more rapid rotation and greater diameter of

Jupiter.

434. Jupiter's satellites; their distances, periods, etc. Jupiter is

attended by four moons, or satellites, revolving around the pri-

mary as our moon revolves around the earth, but with a much
more rapid motion. They are numbered 1, 2, 3, 4, in the order

of their distances from the primary.
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The nearest moon completes a revolution in 42 hours, in which

time, as seen from Jupiter, it goes through all the phases of thin,

crescent, half moon, gibbous, and full rnoon. Its distance from

Jupiter is 280,000 miles. The distance of the second satellite is

440,000 miles, and it completes a revolution in 85 hours. The
distance of the third satellite is 700,000 miles, and its time of

revolution 172 hours. The distance of the fourth satellite is

1,200,000 miles, and its time of revolution is 400 hours, or 16

days and 16 hours.

These satellites were discovered by Galileo, at Padua, on the

8th of January, 1610. When viewed with a telescope of moder-

ate power, they present the appearance of minute stars, ranged

nearly in the direction of a line coinciding with the planet's equa-
tor. Their distances from the primary are so small that they are

all .included in the field of a telescope of moderate magnifying

power, the distance of the most remote one being only 13 times

the diameter of the planet.

The real diameter of the smallest satellite is 2200 miles, being
the same as the diameter of our moon

;
and the diameter of the

largest satellite is 3500 miles. .

The satellites shine with the brilliancy of stars of between the

sixth and seventh magnitude ; but, owing to their proximity to

the planet, which overpowers their light, they are in general in-

visible without the aid of the telescope. On high mountains,

where the air is extremely rare, they have, however, been detect-

ed by the naked eye.

The orbits of the satellites are nearly circular, and are but slight-

ly inclined to the plane of Jupiter's orbit. Hence their apparent
motion is oscillatory, going alternately from their greatest elonga-

tion on one side to the greatest elongation on the other, nearly in

a straight line.

Oar moon makes one rotation on its axis in the same time that

it requires to revolve around the earth. It is thought that Ju-

piter's moons also rotate on their axes in the time of their respect-

ive revolutions round the planet. This is inferred from period-

ical fluctuations in the brightness of the satellites, the periods cor-

responding with the times of revolution of the satellites.

435. Eclipses of the satellites. Jupiter's satellites frequently pass

into the shadow of the primary, and become invisible. Let JJ'
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ns. 113.

represent the planet Jupiter ;
JVJ' its conical shadow

;
SS' the

sun
;
E and E" the positions of the earth when the planet is in

quadrature. Let ADFK represent the orbit of one of the satel-

lites, whose plane we will suppose to coincide with the ecliptic.

From E draw the lines EJ, EJ', meeting the path of the satellite

at H and K, as also at C and D. Let A and B be the points
where the path of the satellite crosses the limits of the shadow.

By a computation similar to that employed in the case of the

earth, Art 286, we find that the length of Jupiter's shadow is

more than 50 millions of miles
; and, since the distance of the

most remote satellite is but little over one million miles, the sat-

ellites pass through the shadow at every revolution. In extreme-

ly rare cases, the fourth satellite, on account of the inclination of

its orbit to the ecliptic, passes through opposition without entering
the shadow.

436. Eclipses, occultations, transits, etc. In the revolution of the

satellites about the planet, four different classes of phenomena are

observed :

1st. When the satellites pass into the shadow of the planet they
are said to be eclipsed. Their entrance into the shadow at A is

called the immersion ; their passage out of the shadow at B is

called the emersion.

2d. When the satellites pass between the lines SJ and S'J' from

F to G, their shadows are projected on the surface of the planet
in the same manner as the shadow of the moon is projected on

the earth in a solar eclipse ;
and in this case the shadow may be

seen moving across the disc of the planet as a small round and

black spot. This is called' a transit of the shadow.

3d. When a satellite, passing behind the planet, is between the

lines EJC and EJ'D, drawn from the earth at E, it is concealed
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from the observer by the interposition of the body of the planet.
It disappears on one side of the planet's disc, and reappears on
the other. This phenomenon is called an occupation of the satel-

lite by the planet.

4th. When a satellite, being between the earth and planet, passes
between the lines EJ and EJ', drawn from the earth to the plan-

et, its disc is projected on that of the planet ;
and it may some-

times be seen passing across the disc, being brighter or darker
than the ground on which it is viewed, according as it is projected
on a dark or bright belt. This is called a transit of the satellite.

The entrance of the satellite upon the disc is called its ingress,a.nd
its departure is called its egress.

"When the planet is in quadrature, all these phenomena may be

witnessed in the revolution of the satellites. The immersion and

emersion of the third and fourth satellites at A and B may both

be witnessed on the same side of the planet when the planet is

near quadrature, but only the immersion of the first and second

satellites is visible. The view of their emersion is intercepted by
the body of the planet, and they do not reappear until after hav-

ing passed behind the planet.

437. Longitude determined by observations of the eclipses. The
times of occurrence of all these phenomena are calculated before-

hand with the greatest precision, and are recorded in the Nautical

Almanac. The mean time of their occurrence at Greenwich is

there given ;
so that, if the time at which any of them occur at

any other station be observed, the difference between the local

time and that registered in the Almanac will give the longitude
of the place from the meridian of Greenwich.

This method of determining longitude is, however, not very ac-

curate
; for, since the light of a satellite decreases gradually while

entering the shadow, and increases gradually on leaving it, the

observed time of disappearance or reappearance of a satellite must

depend on the power of the telescope employed.

438. Configurations of the satellites. The configurations of the

satellites of Jupiter are continually varying. Sometimes they all

appear on one side of the planet; frequently not more than two

or three of the satellites are visible
;
sometimes only one satellite

is visible
;
and a few instances are on record when all four have

been invisible for a short time.
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439. Relation of the mean motions of the first three satellites. If

the mean angular velocity of the first satellite be added to twice

that of the third, the sum will be equal to three times that of the

second. From this it follows that, if from the sum of the mean
longitude of the first and twice that of the third, three times that

of the second be subtracted, the remainder will always be the

same quantity ;
and from observation it is found that this quan-

tity is 180. Hence it also follows that the first three satellites

can never all be eclipsed at once; but while two of them are

eclipsed, the third may be between the earth and Jupiter, in which

position a satellite is often entirely invisible unless to the best tel-

escope.

440. Transmission of light. Soon after the invention of the tel-

escope, Roemer, a Danish astronomer, computed a table showing
the time of occurrence of every eclipse of the satellites of Jupiter
for a period of twelve months. He then observed the moments
of their occurrence, and compared his observations with the times

registered in his table. At the commencement of his observa-

tions the earth was at E', where it is nearest to Jupiter. As the

earth moved toward E", it was found that the eclipses occurred a

little later than the time computed. As the earth moved toward

E'", the occurrence of the eclipses was more and more retarded,

until at E'" they occurred about 16 minutes later than the com-

puted time. While the earth moved from E'" to E', the observed

time was always later than the computed time
;
but this differ-

ence became less and less, until, on arriving at E', the observed

time agreed exactly with the computed time.

Thus it appeared that the lateness of the eclipse depended en-

tirely upon the increased distance of the earth from Jupiter.

When the earth was at E"', the eclipse was observed 16 minutes

later than when the earth was at E'
; and, since the diameter of

the earth's orbit is 190 millions of miles, the observation of the

eclipse was delayed one second for every 200,000 miles that the

earth's distance from Jupiter was increased. Now, since the

eclipse must commence as soon as the satellite enters Jupiter's

shadow, the delay in the observed time must be due to the time

required for the light, which left the satellite just before its ex-

tinction, to reach the eye.

By more exact observations, it is found that light requires 16m.
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26.6s. in crossing the earth's orbit; and hence the velocity of

light is 192,000 miles per second.

SATURN.

441. Distance, period, etc. The mean distance of Saturn from
the sun is 909 millions of miles

; and, on account of the eccen-

tricity of its orbit, this distance is augmented at aphelion, and di-

minished at perihelion by more than -^th of its whole amount,
varying therefore from 858 millions to 960 millions of miles.

Saturn makes one revolution about the sun in 29 years ;
and

the interval between two successive oppositions is 378 days.

442. Diameter, real and apparent. Saturn is the largest of all

the planets except Jupiter. Its equatorial diameter is 75,000

miles, being more than nine times that of the earth
;
and its vol-

ume is nearly 800 times that of the earth.

The mean value of its apparent diameter is about 17"; and it

appears as a star of the first magnitude, with a faint reddish light.

Its disc is oval, the equatorial diameter being TVth greater than

the polar. The disc is traversed by streaks of light and shade

parallel to its equator ;
but these belts are much more faint than

those of Jupiter. These belts indicate the existence of an atmos-

phere surrounding the planet, and attended with the same system
of currents which prevail on Jupiter.

443. Rotation. Saturn makes one rotation upon its axis in 10-J

hours
;
and the inclination of the planet's equator to the plane

of the ecliptic is 28. Thus the year of Saturn is diversified by
the same succession of seasons as prevail on our globe. The year
in Saturn is equal to 10,700 terrestrial days, or 24,700 Saturnian

days.

444. Saturn's rings. Saturn is surrounded by a very thin plate

of matter in the form of a ring, which is nearly concentric with

the planet, and in the plane of its equator. It is therefore in-

clined to the ecliptic at an angle of 28, and intersects it in two

points, which are called the ascending and descending nodes of

the ring. With powerful telescopes certain dark streaks are seen

upon its surface, bearing some resemblance to the belts of the

planet. One of these is permanent in position, and indicates that
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the ring consists of two concentric rings of unequal breadth, one

placed outside the other, without any mutual contact.

445. Dimensions of the rings. The distance from the surface of

Saturn to the inside of the nearest ring is about 19,000 miles
;
the

breadth of this ring is 17,000 miles; the interval between the two

rings is 1800 miles
;
and the breadth of the exterior ring is 10,300

miles. The greatest diameter of the outer ring is 172,000 miles.

The thickness of the rings is extremely small, and it is believed

that it can not exceed 50 or 100 miles.

4-16. Varying appearance of the rings. While this planet moves
in its orbit round the sun, the plane of the rings is carried paral-

lel to itself, so that during a revolution it undergoes changes of

position analogous to those which the earth's equator exhibits.

Twice in every revolution that is, at intervals of 15 years, the

plane of the rings must pass through the sun
;
and the ring, if

seen at all, must appear as a straight line. As the planet ad-

vances in its orbit, the ring appears as a very eccentric ellipse.

This eccentricity diminishes until Saturn is distant 90 from the

nodes of the ring, when the minor axis of the ellipse becomes

equal to about half the major axis; from which time the minor

axis decreases, until, at the end of half a revolution, the ring again

appears as a straight line.

These different positions of Saturn's ring are represented in the

annexed diagram, where S represents the sun, MN the orbit of the

ISTB

lau

B

earth, and A, B, C, D, etc., different positions of Saturn. "When

Saturn, is at A and E, the plane of the ring passes through the
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sun, and only the edge of the ring can be seen, as represented in

the figure ;
when Saturn arrives at B, the ring appears as an el-

lipse ;
and when it arrives at C, the minor axis of the ellipse is

equal to about half the major axis. After this the minor axis de-

creases, and when the planet reaches E the ring appears again as

a straight line.

When the planet is in quadrature, a portion of the shadow
which it projects on the ring is visible on one side of the disc

;

and, in certain cases, there is seen a portion of the shadow of the

ring projected on the planet's disc. Ttiese phenomena prove that

both the planet and the ring derive their illumination from the

sun.

447. Disappearance of the rings. The rings of Saturn may be-

come invisible from the earth either because the parts turned to-

ward the earth are not illumined by the sun, or, being illumined,

subtend no sensible angle. JFVrs,When the plane of the rings

passes through the sun, only the edge of the ring is illumined,

and this is too thin to be seen by any but the most powerful tel-

escopes. Second, When the plane of the rings passes through the

earth, the ring, for the same reason, disappears to ordinary tele-

scopes. Third, When the sun and the earth are on opposite sides

of the plane of the rings thnt is, when the plane of the rings, if

produced, passes between the sun and the earth, the dark side of

the rings is turned toward the earth, and the rings entirely dis-

appear.
Two such disappearances usually take place during the year in

which the plane of Saturn's rings crosses the earth's orbit. To

Fijr. 115.

show this, let S be the sun, ABCD the earth's orbit, EFGr a part

of Saturn's orbit, and F the position of Saturn when the plane
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of the rings, if produced, would pass through the sun. Draw AG,
CE, parallel to SF, touching the earth's orbit in A and C. Then,
since the ring always preserves its parallelism, its plane can no-

where intersect the earth's orbit, and therefore no disappearance
can take place, unless the planet be between E and G. Now,
since SE, the distance of Saturn from the sun, is to SO, that of the

earth, as 9.54 to 1, the angle SEC or ESF is found by computa-
tion equal to 6 1', and the whole angle ESG-12 2'; and, as

Saturn's periodic time in his orbit is 10,759 days, he will be 359^-

days in describing 12 2' that is, about 6 days less than a com-

plete year. The earth, then, describes very nearly an entire rev-

olution within the limits of time when a disappearance of the ring

is possible.

448. Number and duration of the disappearances. The number

of these disappearances and their duration will depend upon the

position of the earth in its orbit when the planet arrives at E.

If, when Saturn arrives at E, the earth is at A, the earth will

encounter the plane of the ring, advancing parallel to CE, some-

where in the quadrant BC, as at II. The ring will then disappear,

and the disappearance will continue as the earth proceeds toward

C, because the dark side of the ring is toward the earth. This

disappearance will last about two months, and close when the

plane of the ring at F passes the sun, for after that time the il-

lumined side will be toward the earth. While the earth proceeds
from C through D to A, the plane of the ring will move from FS
to GA, and will pass A six days before the earth reaches that

point. In this case there will be but one period of disappearance

of the ring, lasting about two months.

If, when Saturn is at E, the earth is at K, it will meet and pass

through the advancing plane of the ring somewhere in the quad-

rant BC, after which the dark side will be toward the earth.

The plane of the ring will pass the sun when the earth is on the

quadrant CD, after which the bright side will be presented to the

earth. But the earth will overtake the nodal line before it reaches

A, and therefore look again upon the dark side until it recrosses

the line somewhere in the neighborhood of A. Thus there will

be two periods of disappearance. These two periods may unite in

a single period of about 8 months' duration, and this will happen
when the earth and the nodal line pass D at the same instant ; for
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then the plane of the ring is between the earth and sun both be-

fore and after passing the point D.

If, when the planet is at F, the earth is at B, then the illumined

side of the ring must have been turned toward the earth during
the whole time that the planet was moving from E to F

;
and the

illumined side of the ring will also be turned toward the earth

during the whole time that the planet moves from F to G
;
that

is, there is only a momentary disappearance of the ring ;
and

even this can never be observed, because the planet, being in con-

junction with the sun, is lost in the splendor of the sun's light.

In general, during the year in which the line of the ring's nodes

passes the earth, there are two periods of disappearance, arising

from the third cause mentioned in Art. 447, each beginning and

ending with a disappearance from the first or second cause.

449. Observations near the periods of disappearance. The last

disappearance of Saturn's ring took place in 1862. Observations

near these periods of disappearance have indicated the existence

of great inequalities on the rings. The rings frequently present

the appearance of a broken line of light projecting from each side

of the planet's disc. This broken appearance may be explained

by supposing inequalities of surface, rendering some parts of the

ring so thick as to be visible, while others are so thin as to be in-

visible when presented edgeways to the observer. It is probable,

also, that the rings are not situated exactly in the same plane.

A dark line has sometimes been seen dividing the outer ring

into two, which seems to indicate that the ring is really triple ;

and some observers have thought that they had discovered evi-

dence of a still greater number of divisions.

450. An inner ring discovered by Professor Bond. In 1850, Pro-

fessor Bond, at Cambridge, discovered an inner ring, composed

of matter which reflects light much more imperfectly than the

planet or the other rings ;
and is transparent to such a degree

that the body of the planet can be seen through it. This ring is

situated between the planet and the bright rings, and approaches

within about 8000 miles of the body of the planet. This ring has

since been seen by numerous observers both in this country and

in Europe, and its existence is unquestioned. In order to account

for the fact that this ring has never been seen before, it has been
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conjectured to be of recent formation. It appears at least proba-
ble that this ring has undergone some important change since the

time of Sir William Herschel.

The discovery of this new ring, together with the apparently
variable number of the divisions of the brighter rings, seem to

render it probable that the rings are formed by a cloud of sat-

ellites too small to be separately seen, and too close together to

allow the intervals between them to be visible. The transparency
of the inner ring may be explained by supposing that the parti-

cles are so scattered that we can see through the cloud.

451. What sustains Saturn's rings f Saturn's rings are sustained

in precisely the same manner as our moon is sustained in its rev-

olution about the earth. We may conceive two moons to revolve

about the earth in the same orbit as the present one, and they
would be sustained by the same law of attraction. In the same

manner, three, four, or a hundred moons might be sustained. In-

deed, we may suppose as many moons arranged around the earth

as would complete a circle, so as to form a ring of moons in con-

tact with each other. They would all be sustained in the same

manner as our present moon is sustained. If we conceive these

moons to be cemented together by cohesion, we shall have a con-

tinuous solid ring; and the ring would rotate about its axis in

the same time as a moon situated near the middle of its breadth

would revolve about the primary. Observations have actually

indicated that the rings of Saturn have a revolution round their

common centre, and in their own plane, in a period of lOh. 32m.

452. Appearance of the ringsfrom the planet itself. The rings of

Saturn must present a magnificent spectacle in the firmament of

that planet, appearing as vast arches spanning the sky from the

eastern to the western horizon. Their appearance varies with the

position of an observer upon the planet. To an observer stationed

at Saturn's equator, the ring will pass through the zenith at right

angles to the meridian, descending to the horizon at the east and

west points. If the observer be stationed a few degrees from the

equator, on the same side of the ring as the sun, the ring will pre-

sent the appearance of an arch in the heavens, bearing some re-

semblance in form to a rainbow. If we suppose the observer to

travel from the equator toward the pole, the elevation of the bow
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will diminish, and near latitude 63 it will descend entirely be-

low the horizon. Beyond this parallel, all view of the rings will

be intercepted by the convexity of the planet. Near latitude 37
the rings are seen in their greatest splendor, forming an arch 15
in breadth.

453. Saturn's satellites; their distance, period, etc. Saturn is at-

tended by eight satellites, all of which, except the most distant

one, move in orbits whose planes coincide very nearly with the

plane of the rings. The satellites are numbered 1, 2, 3, etc., in the

order of their distance from the primar}
r

.

The sixth satellite is the largest, and was first discovered by
Iluygens in 1655. Its distance from the centre of the planet is

778,000 miles, and the time of one revolution is about 16 days.
Its diameter is about 3000 miles. It shines like a star of the

eighth magnitude, and in powerful telescopes exhibits a decided

disc.

The eighth satellite was discovered by Cassini in 1671. Its dis-

tance from the centre of the planet- is 2,268,000 miles, which is

nearly twice that of the farthest satellite of Jupiter, and the time

of one revolution is 79 days. Its diameter is estimated at about

1800 miles. The plane of its orbit is inclined 10 to the plane of

the ring.

Cassini noticed that this satellite regularly disappeared during
half its revolution when to the east of Saturn. The improvement
of telescopes has enabled more recent observers to follow the sat-

ellite through the entire extent of its orbit; but it is only with

the greatest difficulty that it can be seen on the eastern side of

the planet. It is hence inferred that this satellite rotates on its

axis in the time of one revolution round the primary ;
and it is

probable that the variations in its brightness are owing to some

parts of its surface being less capable of reflecting the sun's light

than others. At maximum brightness, this satellite appears like

a star of the ninth magnitude.
The fifth satellite was discovered by Cassini in 1672. Its dis-

tance from the primary is 336,000 miles, and its period of revolu-

tion 4J days. Its diameter is estimated at 1200 miles. It gener-

ally shines like a star of the tenth or eleventh magnitude.

The fourth satellite was discovered by Cassini in 1684. Its

distance from the primary is 240,000 miles, and its period of rev-
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olution is 2f days. When brightest, it appears as a star of the

eleventh magnitude.
The third satellite was discovered by Cassini in 1684. Its dis-

tance from the primary is 188,000 miles, and its period is 1 day
and 21 hours. It generally resembles a star of the thirteenth

magnitude. The diameters of the third and fourth satellites have

been estimated at 500 miles.

The second satellite was discovered by Sir William Ilerschel in

1787. Its distance from the centre of the primary is 152,000

miles, and its period of revolution is 1 day 9 hours. It appears
as a star of the fifteenth magnitude.
The first satellite was discovered by Sir W. Herschel in 1789.

Its distance from the centre of the primary is 118,000 miles, and

its period is 22 hours. This satellite describes 360 of its orbit

in 22 hours, being at the rate of 16 per hour. Its motion, aa

seen from the primary, must therefore be so rapid as to resemble

that of the hour-hand of an immense time-piece. In two minutes

it moves over a space equal to the apparent diameter of our moon.

This satellite is an extremely faint object, and can only be seen

by the largest telescopes under the most favorable circumstances.

The seventh satellite was first discovered by Professor Bond,
of Cambridge, September 16, 1848

; and, two days later, it was

seen by Mr. Lassell, of Liverpool. Its distance from the primary
is 940,000 miles, and its period of revolution is 22 days. It re-

sembles a star of the seventeenth magnitude.

454. Mass and density of Saturn. The distance of a satellite

compared with its time of revolution enables us to compare the

mass of Saturn, or its quantity of matter, with that of the earth.

This mass is thus found to be 100 times that of the earth
;
but its

volume is nearly 800 times that of the earth
;
hence its density is

only about th that of the earth. Since the density of the earth

is 5 times greater than that of water, the density of Saturn must

be about ths that of water. This is the density of the lighter

sorts of wood, such as maple and cherry.

URANUS. ~

455. Discovery. In 1781, the attention of Sir W. Ilerschel was

attracted to an object which he did not find registered in the cata-

logues of stars, and which, with a high magnifying power, present-
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ed a sensible disc
;
and he soon found that it changed its place

among the fixed stars. He first announced this object as a comet
;

but when it was found to move in an orbit nearly circular be-

yond the orbit of Saturn, its proper place among the planets was
no longer questioned, and it was proposed to call it the "

Georgi-
um Sidus," in compliment to George III. The name Herschel
was preferred by Laplace, and was, to some extent, adopted ;

but
the scientific world have at last universally agreed upon the name
Uranus.

456. Former observations of this planet. As soon as an approxi-
mate orbit of the planet had been obtained, it was possible to

compute its place at any past epoch. In this way it was found
that the planet Uranus had been observed six times by Flamsteed
r.s a fixed star, twelve times by Lemon nier, and once by Mayer.
Thus the planet had been observed as a fixed star at least nine-

teen times before its real nature was detected by Sir W. Herschel.

These observations extend back to 1690, and have proved of the

greatest value in accurately determining the planet's orbit.

457. Distance, period, etc. The mean distance of Uranus from

the sun is 1828 millions of miles
; and, since the eccentricity of its

orbit is very small, this distance is increased in aphelion, and di-

minished in perihelion by less than one twentieth of its entire

amount. The plane of its orbit coincides nearly with that of the

ecliptic.

The period of one revolution is 84 years ;
but the interval be-

tween two successive oppositions is only 370 days.

458. Diameter,form of its disc, etc. The diameter of this planet

is 36,000 miles, being about half that of Saturn, and more than

four times that of the earth. Its volume is nearly 100 times that

of the earth
;
and its apparent diameter is about 4".

The planet may be just discerned by a person gifted with

strong sight, without the telescope, in a perfectly dark sky, when

its exact position with reference to the surrounding stars is known.

The disc of Uranus appears uniformly bright, and of a pale

color, but no appearance of spots or belts has been perceived.

For this reason, the time of rotation upon its axis has not been

ascertained. Some astronomers think they have detected consid-

Q



242 ASTRONOMY.

erable ellipticity in the form of the planet; but other astronomers,

with equally good telescopes, have not succeeded in discovering

any difference in the diameters.

Since light moves at the rate of 192,000 miles per second, it

would require over 9000 seconds, or 2 hours, to move from the

sun to Uranus. Whatever changes may take place on the sur-

face of the sun, they can not, therefore, be perceived by inhab-

itants of that planet until 2 hours after they really take place.

459. Satellites. Soon after the discovery of this planet, Sir W.
Herschel announced that it was attended by a system of six sat-

ellites, but only four have ever been seen by any other observer.

The times of revolution of these four satellites, together with their

distances from the primary, have been well determined, and are

as follows:

Satellite.
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NEPTUNE.

460. Perturbations of the planets. If the planets were subject

only to the attraction of the sun, they would revolve in exact el-

lipses, of which the sun would be the common focus
; but, since

they arc also subject to the attraction of each other, they are drawn

slightly out of the ellipses which they would otherwise describe.

When the masses and distances of the planets are known, these

disturbances can be computed with such precision that the exact

place of any planet can be determined for any time either past or

future.

461. Irregularities in the motion of Uranus.-^-In. 1821,Bouvard

published a set of tables for computing the place of Uranus. The

materials for the construction of these tables consisted of 40 years'

regular observations since 1781, and the 19 accidental observa-

tions (Art. 456), reaching back almost a century farther. Bouvard

was unable to find any elliptic orbit which, combined with the

perturbations of known planets, would represent the entire series

of observations. He therefore rejected the ancient observations,

and founded his tables upon the observations since 1781. These

tables represent tolerably well the observations of the 40 years

from which they were derived; but they do not represent the

observations of the planet made before 1781, nor do they repre-

sent the observations made since 1820. From 1690 to 1715 the

observed place of the planet was considerably in advance of its

computed place ;
from 1715 to 1771 it was considerably behind

;

and since 1825 it has been behind its computed place, and the

error has been rapidly increasing. In 1830 the deviation of the

planet from its computed place amounted to twenty seconds of

arc; in 1840 the deviation amounted to ninety seconds; and in

1844 it amounted to one hundred and twenty seconds. These

discrepancies are far too great to be ascribed to the inaccuracy

of the observations, and we must conclude that they result from

some cause of which Bouvard did not take account in the con-

struction of his tables.

In order to explain these anomalies, it was conjectured by

some astronomers that the Newtonian law of gravitation was

not rigorously exact at the distance of Uranus, while others

supposed that the discrepancies might be accounted for by
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the action of an unknown planet situated beyond the orbit of

Uranus.

462. Researches of Le Verrier and Adams. In the year 1845, two

astronomers, M. Le Verrier, of Paris, and Mr. Adams, of Cambridge,

England, independently of each other, attempted to determine the

place and magnitude of a planet outside of Uranus, which would

account for these irregularities. The problem which they pro-

posed, and which they actually solved, was this: Given the pertur-

bations produced in Uranus by the action of an unknown planet ; it

is required to assign the elements of a planet capable of producing
these perturbations.

Le Verrier and Adams, by a most laborious analysis, demon-

strated that these irregularities were such as would be caused by
an undiscovered planet revolving about the sun at a distance

nearly double that of Uranus, and with a mass somewhat greater

than that of Uranus; and they pointed out the place in the heav-

ens which this planet ought at present to occupy. Le Verrier

was the first to publish to the world the results of his research-

es, and thus obtained the chief credit for the discovery.

463. Discovery of the planet at Berlin. On the 23d of September,

1846, Dr.Galle, of the Berlin Observatory, received a letter from

Le Verrier, announcing the results of his calculations, informing
him that the longitude of the unseen planet ought to be 326,
and requesting him to search for it. Dr. Galle did search for it,

and found it on the first night. It appeared as a star of the eighth

magnitude, having a longitude of 326 52', and, consequently, only
52' from the place assigned by Le Verrier. This planet has been

called Neptune.
The orbit of Neptune is smaller than that predicted by either

Adams or Le Verrier, and its mass somewhat less; yet its disturb-

ing action upon Uranus is such as perfectly to explain the anom-

alies which had been observed in the motion of that planet

464. Earlier observations of this planet. As soon as an approx-
imate orbit of Neptune had been obtained, its place was computed
back for several preceding years, and it was found that it had been

repeatedly observed as a fixed star. Two such observations were

made in 1795, one in 1845, and three in 1846, before it was seen
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at Berlin. With the aid of these observations, it was soon possi-
ble to obtain a very accurate determination of the orbit of the

planet.

465. Distance, period, etc. The mean distance of Neptune from
the sun is 2862 millions of miles, and its period of revolution is

164 years. Its apparent diameter is about 2| seconds, and it re-

sembles a star of the eighth magnitude. Its real diameter is

35,000 miles, which is a little less than that of Uranus.

466. Bode's law disproved. The discovery of Neptune has en-

tirely refuted Bode's law of planetary distances. This law has

been stated in Art 420. The following table shows, first, the true

relative distance of each of the planets ; second, the distance ac-

cording to Bode's law
; and, third, the error of this law.
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Several observers at first suspected that Neptune was attended

by a ring like Saturn, but later observations do not countenance

this idea.

468. Appearance of the solar system as observedfrom Neptune.

The apparent diameter of the sun as seen from Neptune is 64",

which but little exceeds the greatest apparent diameter of Venus

as seen from the earth. The illuminating effect of the sun at that

distance is only about one thousandth part of its effect upon the

earth, being about midway between our sunlight and our moon-

light

With reference to Neptune, all the other planets are inferior,

and most of them never appear to recede many degrees from the

sun. The greatest elongation of Uranus is 40, of Saturn 18, of

Jupiter 10, of Mars 3, and of the interior planets still less. Ura-

nus, Saturn, and Jupiter might perhaps therefore be seen by the

inhabitants of Neptune as stars of the sixth magnitude, but none

of the remaining planets. All the planets, if they could be ob-

served from Neptune, would occasionally appear to travel across

the sun's disc, but those which are interior to Jupiter subtend so

small an angle that it is doubtful whether they could be seen even

with the best telescope ; and, on account of the small diameter of

the sun, combined with the inclination of the planetary orbits, the

transits of the larger planets would be of extremely rare occur-

rence. A transit of Uranus would not happen oftener than once

in 40,000 of our years.

The problem of finding the distance of the fixed stars presents

very little difficulty to the Neptunian astronomers, except that

which arises from the length of one of their years, required to com-

plete an observation, since they are in possession of a base lino

thirty times as long as that to which we are confined. See Art

ool.
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CHAPTER XVII.

QUANTITY OF MATTER IN THE SUN AND PLANETS. PLANETARY
PERTURBATIONS.

469. How to determine the mass ofa planet. By the method em-

ployed in Art. 266, we may determine the masses of such of the

planets as have satellites. The quantity of matter may also be

found in terms of the distance and periodic time of the planet and

its satellite.

Let M represent the mass of the sun, R the distance of a planet,

and T its periodic time
; then, by Art. 248, the central force which

retains the planet in its orbit is

T2
'

But, since the planet is retained in its orbit by the attraction

of the sun, and this attraction varies directly as the mass, and in-

versely as the square of the distance, Art. 256, we shall have

or M=^~-.
For the same reason, if we put m to represent the mass of a

planet, r the distance, and t the periodic time of a satellite revolv-

ing around it,
we shall have

47rV /9 x

m=-f-. (2)

Comparing equations (1) and (2), we find

... R3 r3

M: m:: ^:
.

Hence we see that the quantities of matter in the bodies -which

compose the solar system are directly as the cubes of the mean

distances of any bodies which revolve about them, and inversely

as the squares of the times in which the revolutions are per-

formed.

Ex, 1. The distance of the earth from the sun is 95,300,000
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miles, and its time of revolution 365.256 days. The distance of

the moon from the earth is 238,900 miles, and its time of revolu-

tion 27.321 days. What is the mass of the sun compared with

that of the earth ? Ans. 355,000 times that of the earth.

Ex. 2. The mean distance ofJupiter from the sun is 495,817,000

miles, and its time of revolution is 103,982 hours; the distance

of its fourth satellite is 1,200,000 miles, and its time of revolution

400.53 hours. What is the mass of the sun compared with that

of Jupiter? Ans. 1047 times that of Jupiter.

Ex. 3. What is the mass of Jupiter compared with that of the

earth ? Ans. 339 times that of the earth.

ExA. The distance of Saturn from the sun is 909,028,000 miles,

and its time of revolution 10,759 days; the distance of its outer

satellite is 2,268,000 miles, and its time of revolution 79.32 days.

What is the mass of the sun compared with that of Saturn ?

Ans. 3500 times that of Saturn.

Ex. 5. What is the mass of Saturn compared with that of the

earth? Ans. 101 times that of the earth.

Ex. 6. The distance of Uranus from the sun is 1,828,200,000

miles, and its time of revolution 30686.8 days ;
the distance of its

fourth satellite is 380,000 miles, and its time of revolution 13.463

days. What is the mass of the sun compared with that of Ura-

nus ? Ans. 21,400 times that of Uranus.

Ex. 7. What is the mass of Uranus compared with that of the

earth ? Ans. 16 times that of the earth.

Ex. 8. The distance of Neptune from the sun is 2,862,457,000

miles, and its time of revolution 60126.7 days ;
the distance of its

satellite is 236,000 miles, and its time of revolution 5.87 days.

What is the mass of the sun compared with that of Neptune ?

Ans. 17,000 times that of Neptune.
Ex. 9. What is the mass of Neptune compared with that of the

earth ? Ans. 21 times that of the earth.

The masses of those planets which have no satellites have been

determined by estimating the force of attraction which they exert

in disturbing the motions of other bodies. The mass of Mercury-
has been determined from the perturbations which it causes in

the motions of Encke's comet, which sometimes passes near to

that planet. The mass ofVenus is determined by the disturbance

which it causes in the orbit of the earth
;
and the mass of Mars is

determined in the same manner.
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470. How to determine the density of a planet. Having determ-
ined the quantity of matter in the sun and planets, and knowing
also their volumes, Art. 387, we can compute their densities, for

these are proportional to the masses divided by the volumes.

Knowing also the specific gravity of the earth, Art. 49, we can

compute the specific gravity of each member of the solar system.
The following table shows the mass, density, and specific gravity
of the principal members of our solar system. The masses are

according to Le Verrier, and differ somewhat from the results of

the preceding computations.
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Fig. 116.

Prob. 5. What would be the periodic time of a satellite revolv-

ing about Jupiter close to the surface of the planet?

Prob. 6. How much faster must Jupiter rotate upon his axis in

order that a body on the equator of the planet may lose all its

gravity ?

PERTURBATIONS OF THE PLANETS.

472. How to compute the disturbing force of apland, It appears
from Art. 470 that the mass of the sun is more than a thousand

times greater than the largest planet, and more than a hundred

thousand times greater than the smaller planets. Moreover, the

difference between the mean distances of the planets is so great,

and the eccentricities of their orbits are so small, that, when they

approach nearest to each other, the disturbing force exerted by
any one upon any other is only a minute fraction of the attrac-

tion of the sun. Both the intensity and direction of the disturb-

ing force caused by any one of the planets may be computed in

the same manner as was shown in the case of the moon, Art. 269.

Let S represent the sun, P a planet revolv-

ing in its orbit ABCD, and let M be another

planet which, by its attraction, disturbs the

motion of P. Take SM to represent the force

with which M attracts S
;
and in the line PM,

produced if necessary, take PE such that

PE : MS : : MS2
: MP2

;
then PE will repre-

sent in quantity and direction the force with

which M attracts P. Eesolve PE into PF
and PG, of which PF is equal and parallel to

SM. Then, as in Art. 269, PG represents the

disturbing force ofM upon P.

The ratio of the line PG to SM may be

computed by Trigonometry when we know
the distances of the two planets from the sun,

and also their relative situations. The dis-

turbing force of M upon P may then be com-

pared with the sun's attraction on P by
means of the following proportions :

1. Disturbing force : M's attraction on sun : : PG : SM.

2. M's att. on sun : sun's att. on M : : M's mass : sun's mass.

3. Sun's attraction on M : sun's attraction on P : : SP2
: SM3

.
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Compounding these proportions,,we have,

Disturbing force : sun's attraction on P : : PG x SP2 x M's mass :

SM3 x sun's mass.

473. Disturbing force of Jupiter and Saturn. In order to show
the application of these principles, we will compute the disturbing
force of the two largest planets, Jupiter and Saturn, upon each
other in two different positions.

Ex. 1. Compare the disturbing force of Saturn upon Jupiter
with the sun's attraction upon Jupiter when the two planets are

in conjunction, assuming the distances ofJupiter and Saturn from
the sun to be 5.2028 and 9.5388, and the mass of the sun to be
3512 times that of Saturn.

Saturn's att. on Jupiter : Saturn's att.

on sun : : MS2
: MP2

: : 9.53S82
: 4.3362

m
:: 4.8396:1.

The force with which Saturn draws Jupiter away from the sun

is therefore represented by 3.8396
; or,

Disturbing force : Saturn's attraction on sun :: 3.8396 ; 1.

Saturn's att. on sun : sun's attraction on Saturn : : 1 : 3512.

Sun's att. on Saturn : sun's att. on Jupiter : : 5.202 2
: 9.53S2

.

By compounding these proportions, we have,

Disturbing force : sun's attraction on Jupiter : : 3.8396 x 5.202 2
:

3512 X9.5382
:: 1:3075;

that is, by the disturbing action of Saturn at conjunction, Jupiter's

gravity to the sun is diminished by -guVsth part.

Ex. 2. Compare the disturbing force of Saturn upon Jupiter
with the sun's attraction upon Jupiter when the two planets are

in opposition to each other. Ans. The ratio is 1 : 20300
;

that is, by the disturbing action ofSaturn at opposition, Jupiter's grav'

ity to the sun is diminished by -j^thyTrth part.

Ex. 3. Compare the disturbing force of Jupiter upon Saturn

with the sun's attraction upon Saturn when the two planets are

in conjunction, assuming the mass of the sun to be 1050 times

tfiat of Jupiter.

Jupiter's att, on Saturn : Jupiter's att. n ijg

on sun : : MS2
: MP2

: : 5.20282
: 4.3362

s
*'

M p
: : 1.4397 : 1.

Hence the force with which Jupiter draws Saturn toward the

sun is represented by 2.4397
; or,
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Disturbing force : Jupiter's attraction on sun : : 2.4397 : 1.

Jupiter's att. on sun : sun's attraction on Jupiter : : 1 : 1050.

Sun's att on Jupiter : sun's att on Saturn : : 9.538* : 5.2022
.

By compounding these proportions, we have,

Disturbing force: sun's attraction 'on Saturn :: 2.4397x9.538*:

1050 x 5.2022
:: 1:128

;

that is, by the disturbing action of Jupiter at conjunction, Saturn's

gravity to the sun is increased by i\-g\\\ part.

Ex. 4. Compare the disturbing force of Jupiter upon Saturn

with the sun's attraction upon Saturn when the two planets are

in opposition to each other. Ans. The ratio is 1 : 357;
that is, by the disturbing action of Jupiter at opposition, /Saturn's

gravity to the sun is diminished by Trsrth part.

474. Periodical inequalities of the planets. It is thus- seen to be

possible to compute the direction and intensity of the disturbing
force exerted at any time by any planet upon any other planet ;

we can therefore compute how much each planet will be drawn

out of its elliptic path by the disturbing action of the other plan-

ets. These disturbances, as stated in Art. 280, are either period-
ical or secular. The periodical inequalities of the planets are

generally small. Those of Mercury can never exceed a quarter
of a minute; those of Venus can never exceed half a minute;
those of the earth about one minute

;
and those of Mars about

two minutes. Those of Jupiter may amount to 20 minutes, and

those of Saturn to 48 minutes, while those of Uranus are less than

3 minutes.

475. Long inequalities. Some of these inequalities are very re-

markable for the length of their periods, arising from a near ap-

proach to commensurability in the times of revolution. Eight
times the period of the earth is nearly equal to thirteen times the

period of Venus
;
or 235 times the period of the earth is almost

exactly equal to 382 times the period of Venus, as was shown

Art. 409. Hence arises in the motion of both of these planet^

an inequality having a period of 235 years ; amounting, however,
to only 2".9 for Venus, and to 2".0 for the earth.

476. Long inequality of Jupiter and Saturn. The long ine-

quality in the motion of Jupiter and Saturn is very celebrated in
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the history of Astronomy. Five times the period of Jupiter is

nearly equal to twice that of Saturn
;
or 77 revolutions ofJupiter

are very nearly equal to 31 of Saturn, corresponding to a period
of 913 years. Hence arises in the motion of both of these plan-
ets an inequality having a period of over 900 years, amounting, at

its maximum, in the case of Jupiter, to about 20', and in the case

of Saturn to 48'.

477. Long inequality of Uranus and Neptune. There is a similar

inequality in the motions of Uranus and Neptune. The periodic
time of Neptune is nearly double that of Uranus; or, more accu-

rately, 25 revolutions of Neptune correspond to 49 of Uranus.

Hence arises in the motions of these planets an inequality having
a period of over 4000 years.

478. Secular inequalities of the planets. The secular inequalities
of the planets are generally small, but in the lapse of time become

important by their continued accumulation. The nodes of all the

planetary orbits have a slow motion westward on the ecliptic,

amounting, in one case, to 36" annually. The line of the apsides
of their orbits is also in continual motion, that ofMercury moving
eastward 5", that of the earth 12", and that of Saturn 19" annually.
The disturbing action of one planet upon another causes the

line of the apsides sometimes to progress, and at other times to

regress ;
but in the case of most of the planets the former effect

predominates.

479. Secular variation of the inclination. The inclinations of the

planetary orbits and their eccentricities are only subject to small

periodical variations on each side of a mean, from which they
never greatly depart. In no case (excepting the asteroids) does

the change of inclination amount to one half of a second annually.

The inclinations of the orbits of Jupiter and Saturn are closely

related to each other
;
and it has been computed that the inclina-

tion of the orbit of Jupiter to the ecliptic must oscillate between

the values of 2 2' and 1 17', while that of Saturn will oscillate

between the values of 2 32' and 46', requiring for these changes

a period of 50,000 years.

The inclination of the earth's equator to the ecliptic is now 24

minutes less than it was twenty-one centuries ago, and is now de-
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creasing at the rate of half a second annually ;
but it has been

proved that this is a secular inequality of a long period, and, after

reaching a minimum, will return in the contrary direction, and

thus oscillate back and forth about a mean position. It has been

computed that the obliquity has been decreasing for 20,000 years,

and will continue to decrease for 15,000 years longer, when it will

be reduced to 22 15'
;
after which the obliquity will increase.

480. Secular variation of the eccentricity. The eccentricities of

all the planetary orbits are continually changing, but (with the

exception of the asteroids) this change in no case exceeds one

thousandth part in 300 years. In every instance these changes
will always be confined within moderate limits. Those of Ju-

piter will be confined within the limits of 0.06 and 0.02, while

those of Saturn will be confined within the limits of 0.08 and

0.01, the period in each case being 35,000 years.

The eccentricity of the earth's orbit is decreasing at the rate of

0.00004 in a century ;
but this change will always be confined

within the limits of 0.07 and 0.003. The earth's orbit can there-

fore never become an exact circle. Le Verrier has computed that

the eccentricity will continue to diminish for 24,000 years, when
its value will be .0033. It will then begin to increase, and at the

end of another period of 40,000 years its value will be .02, after

which it will again slowly decrease.

This diminution in the eccentricity of the earth's orbit causes

an acceleration in the mean motion of the moon amounting to

10" in a century, Art. 281. This acceleration will continue as

long as the earth's orbit is approaching the circular form
;
but

when the eccentricity of the earth's orbit begins to increase, the

acceleration of the moon's mean motion will be converted into a

retardation.

481. Secular constancy of the major axes. Thus the place of every

planet in its orbit is changed by the action of the other planets,

and the orbit itself is changed in all its elements but two in the

major axis of the orbit, and the time of the planet's revolution.

These two elements of every planetary orbit remain secure against
all disturbance. Moreover, all the inequalities in the planetary
motions are periodical, and each of them, after a certain period
of time, runs again through the same series of changes. Ev-
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ery planetary inequality can be expressed by terms of the form

Asin. nt
t
or Acos. nt, where A is a constant coefficient, and n a

certain multiplier of
t,
the time

;
so that nt is an arc of a circle

which increases proportionally to the time. Now, although nt is

thus capable of indefinite increase, yet, since sin. nt can never ex-

ceed the radius, or unity, the inequality can never exceed A. Ac-

cordingly, the value of the term Asin. nt first increases from to

A, and then decreases from A to
;
after which it becomes nega-

tive, and extends to A, and from thence to again, the period
of all these changes depending on

rz, the multiplier of t. If the

value of any of the planetary inequalities contained a term of the

form Ant, or Atang. nt, the inequality so expressed would increase

without limit. Lagrange, Laplace, and Poisson, in demonstrating
that no such terms as these last can enter into the expression of

the disturbances of the planets, made known one of the most im-

portant truths in physical astronomy. They proved that the

planetary system is stable; that the planets will neither recede in-

definitely from the sun, nor fall into it, but continue to revolve

forever in orbits of very nearly the same dimensions as at pres-

ent, unless there is introduced the action of some external force.

482. Why the solar system is stable. This accurate compensation
of the inequalities of the planetary motions depends on certain

conditions belonging to the original constitution of the solar sys-

tem.

1st. It is essential that the mass of the central body should be

much greater than that of any of the planets. If the mass of the

sun were no greater than that of Jupiter, then the disturbing ac-

tion of Jupiter upon the nearer planets would be sufficient en-

tirely to change the form of their orbits
;
but at present the dis-

turbing action of Jupiter upon any one of the planets is small

when compared with the attraction of the sun upon the same

planet.

2d. It is essential that the distances between the planets, espe-

cially of the larger ones, should be considerable when compared

with their distances from the sun, otherwise, when in conjunction,

their disturbing action upon each other would be so great as en-

tirely to change the form of their orbits. Hence, also,

3d. It is essential that the orbits of the planets, especially of the

larger ones, should have but little eccentricity. If the orbit of
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Jupiter were as eccentric as that of many of the comets, he might
at times approach so near to the earth as entirely to change the

form of our orbit This principle is well illustrated by the case

of the comet of 1770. See Art 521.

4th. It is essential that the planets should revolve around the

sun in planes but little inclined to each other. If Jupiter's orbit

had great inclination to the ecliptic, he would tend continually to

draw the earth out of its present plane of motion, while the axis

of the earth would retain a fixed position in space ;
that is, the

obliquity of the ecliptic might change very greatly, and this would
involve a change of seasons which might be very unfavorable

both to animal and vegetable life.

These four conditions are essential to the stability of any sys-

tem. In the demonstration by Laplace that the solar system is

stable, a fifth condition is required, namely, that the planets all

move about the sun in the same direction.

These conditions do not necessarily result from the nature of

motion or of gravitation, neither can they be ascribed to chance,
for it is improbable that without a cause particularly directed to

that object there should be such a conformity in the motions of

so many bodies scattered over so vast an extent of space. It

seems difficult to avoid the conclusion that all this is the work
of intelligence and design, directing the original constitution of

the system so as to give stability to the whole.

483. Effect of commensurability in the periodic times. If the pe-

riodic times of the planets were commensurable, and could per-

manently continue thus, it would endanger the stability of the

solar system. If, for example, Neptune made exactly one revolu-

tion while Uranus makes two (as it does very nearly), then the

two planets would always come into conjunction in the same part
of their orbits

;
the effect which Neptune produces upon Uranus

at one conjunction, although small, would be doubled at the sec-

ond conjunction, and trebled at the third; and, after the lapse of

a large number of revolutions, the orbit of Uranus would be en-

tirely changed. But eVen supposing the periodic times to have

been made exactly commensurable, they could not permanently
continue so, since any change produced in the periodic time of

the disturbed planet is necessarily accompanied by a change in

the opposite direction in that of the disturbing planet, so that the
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periods would become incommensurable by the mere effect of
their mutual action. So long as the periodic times of the planets
are incommensurable, their conjunctions take place successive-

ly upon different parts of the orbit, and their effects compensate
each other by mutual opposition. When there is a near approach
to commensurability (as in the case already cited), it requires a

long period of years for these effects to compensate each other

that is, it gives rise to an inequality of a long period.

CHAPTER XVIII.

COMETS. COMETARY ORBITS. SHOOTING STARS.

484. What is a comet? A comet is a nebulous body revolving
in an orbit about the sun, sometimes with a bright nucleus and

tail, but frequently with neither. The orbits of all known comets

are more eccentric than any of the planets. The most eccentric

planetary orbit known is that of Aethra (132), one of the asteroids,

whose eccentricity is 0.380; the least eccentric cometary orbit is

that of Faye's comet, whose eccentricity is 0.556. In consequence
of this eccentricity, and of the faintness of their illumination, all

comets, during a part of every revolution, disappear from the ef-

fect of distance.

485. Number of comets. The number of comets which have

been recorded since the birth of Christ is over 600, and the num-

ber of those whose orbits have been computed is 250. Of these,

205 have moved either in parabolic orbits, or in ellipses of such

eccentricity that they could not be distinguished from parabolas,

there are five whose motions are best represented by an hyper-

bola, while about 40 have been computed to move in elliptic

orbits.

The number of comets belonging to the solar system must

amount to many thousands. Eighty comets have been recorded

within the past 50 years ;
and if we admit that the proportion of

faint comets was as great before the invention of the telescope as

it has been since, we must conclude that more than 4000 comets

have approached the sun within the orbit of Mars since the com

mencement of the Christian era.

R
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Comets are usually named from the year in which they appear.

Several of them, however, are known by the name of their first

discoverer, or of some astronomer specially connected with their

history. Among the most celebrated comets are those of Halley,

Encke, Biela, Donati, etc., which are specially described in Arts.

507-524.

486. Position of cometary orbits. The orbits of comets exhibit

every possible variety of position. Their inclinations to the

ecliptic range from to 90, and their motion is as frequently

retrograde as direct
;
in other words, their inclinations range from

to 180. Unlike the planets, the comets are seen near the

poles of the heavens as well as near the ecliptic.

487. Period of visibility. The duration of a comet's visibility

varies from a few days to more than a year, but it most usually

happens that it does not exceed two or three months. Only six

comets have been observed so long as 8 months. The comet of

1825 was observed nearly 12 months, and that of 1811 was ob-

served 17 months. The period of visibility of a comet depends
on its intrinsic brightness, and on its position with reference to the

earth and sun.

488. The coma, nucleus, tail, etc. The most splendid comets

consist of a roundish, and more or less condensed mass of nebu-

lous matter termed the head, from which issues, in a direction op-

posite to that of the sun, a train of a lighter kind of nebulosity

called the tail. Within the head is sometimes seen a bright point,

like a star or a planet, which is called the nucleus of the comet.

In most instances the centre of the head exhibits nothing more

than a higher degree of condensation of the nebulous matter,

which always has a confused appearance in the telescope. The

nebulosity which surrounds a highly condensed nucleus is called

the coma. In most instances the coma is less than 100,000 miles

in diameter, and but very rarely exceeds 200,000 ;
but that of

the comet of 1811 exceeded a million of miles in diameter.

489. Dimensions of the nucleus. In a few instances the diameter

of the nucleus has been computed at 5000 miles
;
but it seldom

exceeds 500 miles
;
and the majority of comets have no bright

nucleus at all.
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It is probable that in those cases in which the diameter of the

nucleus has been estimated at 5000 miles, the object measured
was not a solid body, but simply nebulous matter in a very high

degree of condensation. Thus Donati's comet at one time exhib-

ited a bright nucleus whose diameter was computed at over 5000
miles. But as the comet approached the sun and increased in

brilliancy, the nucleus steadily decreased
;
and when the comet

was nearest to the sun, the diameter of the nucleus was less than

500 miles. The nuclei of some comets have exactly the appear-
ance of solid bodies

;
but the true nucleus, apart from the sur-

rounding nebulosity, is probably quite small.

490. Variations in the dimensions of comets, The real dimen-

sions of the nebulosities of comets vary greatly at different dates

during their visibility. Many of them contract as they approach
the sun, and dilate on receding from the sun. This has been re-

peatedly observed in the case of Encke's comet, and the same

has been noticed in the case of several other comets. It has

been conjectured that this effect may result from the change of

temperature to which the comet is exposed. As the comet ap-

proaches the sun, the vapor which composes the nebulous enve-

lope may be converted by intense heat into a transparent and in-

visible elastic fluid. As it recedes from the sun, the temperature

decreasing, this vapor is gradually condensed, and assumes the

form of a visible cloud
;
whence the visible volume of the comet

is increased, while its real volume may perhaps be diminished.

491. Changes in the nebulosity about the nucleus. When comets

have a bright nucleus and a splendid train, the nebulosity about

the nucleus undergoes remarkable changes as the comet approach-

es the sun. The nucleus becomes much brighter, and throws out

a jet or stream of luminous matter toward the sun. Sometimes

two, three, or more jets are thrown out at the same time in dif-

ferent directions. This emission of luminous matter sometimes

continues, with occasional interruptions, for several weeks. The

form and direction of these luminous streams undergo singular

and capricious alterations, so that no two successive nights pre-

sent the same appearance. These jets, though very bright at their

point of emanation from the nucleus, fade away and become dif-

fuse as they expand into the coma, at the same time curving back-
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ward, as if impelled against a resisting medium. These streams

combined form the outline of a bright parabolic envelope sur-

rounding the nucleus, and this envelope steadily increases in its

dimensions, receding from the nucleus. After a few days a sec-

ond luminous envelope is sometimes formed within the first, the

two being separated by a band comparatively dark, and this sec-

ond envelope steadily increases in its dimensions from day to day.
A few days later a third envelope is sometimes formed, and so on

for a long series. Donati's comet showed seven such envelopes
in succession, each separated from its neighbor by a band com-

paratively dark, and each steadily receding from the nucleus. See

Plate VI., Fig. 3.

These envelopes seem to be formed of substances different from

the vapors on the earth's surface, for they do not sensibly refract

light They appear to be driven off from the nucleus by a re-

pulsive force on the side next the sun, somewhat as light particles

are thrown off by electric repulsion from an excited conductor;
and the dark bands separating the successive envelopes seem to

result from a periodical cessation or diminished activity of this

repulsive force.

492. The tail. The tail of a comet is but the prolongation of

the nebulous envelope surrounding the nucleus. Each particle

of matter, as it issues from the nucleus on the side next to the sun,

gradually changes its direction by a curved path, until its motion

is almost exactly away from the sun. The brightness and extent

of the train increase with the brightness and magnitude of the en-

velopes, the tail appearing to consist exclusively of the matter of

the envelopes, driven off by a powerful repulsive force emanating
from the sun. On the side of the nucleus opposite to the sun

there is no appearance of luminous streams, and hence results a

dark stripe in the middle of the tail, dividing it longitudinally

into two distinct parts. This stripe was formerly supposed to be

the shadow of the head of the comet
;
but the dark stripe still

exists even when the tail is turned obliquely to the sun. The
tail is probably a hollow envelope ;

and when we look at the

edges, the visual ray traverses a greater quantity of nebulous par-

ticles than when we look at the central line, which circumstance

would cause the central line to appear less bright than the sides.
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493. Rapidity offormation of the tail. When comets make their

first appearance they generally have little or no tail
; but, by de-

grees, the nebulous envelope is formed, the tail soon appears, which
increases in length and brightness as the comet approaches peri-

helion. When the comet is nearest the sun, the tail sometimes

increases with immense rapidity. The tail of Donati's comet in

1858 increased in length at the rate of two millions of miles per

day ;
that of the great comet of 1811 increased at the rate of nine

millions of miles per day ;
while that of the great comet of 1843,

soon after passing perihelion, increased at the rate of 35 millions

of miles per day.

494. Dimensions of the tail. The tails of comets frequently have

an immense length. That of 1843 attained a length of 120 mil-

lions of miles
;
that of 1811 had a length of over 100 millions of

miles, and a breadth of about 15 millions; and there have been

four other comets whose tails attained a length of 50 millions of

miles.

The apparent length of the tail depends not merely upon its

absolute length, but upon the direction of its axis, and its distance

from the earth. There are six comets on record whose tails sub-

tended an angle of 90 and upward that is, whose length would

reach from the horizon to the zenith
;
and there are about a dozen

more whose tails subtended an angle of at least 45.

The tail usually attains its greatest length and splendor a few

days after the comet passes its perihelion ;
and as the comet re-

cedes farther from the sun, the tail fades gradually away, being

apparently dissipated in space.

495. Position of the axis of the tail The axis of the tail, CG,

Fig. 119, is not a straight line, and, except near the nucleus, is not

directed exactly from the sun, but alwaj^s makes an angle with a

radius vector, SO. This angle generally amounts to 10 or 20,
and sometimes even more, the tail always inclining from the re-

gion toward which the comet proceeds. If the tail were formed

by a repulsive force emanating from the sun, which carried parti-

cles instantly from the comet's head to the extremity of the tail,

then the axis of the tail ought to be turned exactlyfrom the sun.

But, in fact, the particles at the extremity of the tail, as G, are

those which were emitted from the nucleus several days previ-
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ous, perhaps 20 days, when the head of the comet was at A, and,

in consequence of their inertia, they retain the motion in the di-

rection of the orbit which the nucleus had at the time they part-

ed from it The particles near the middle of the tail, as H, are

those which left the nucleus later than the preceding, perhaps 10

days, when the head of the comet was at B, and they retain the

motion in the direction of the orbit which the nucleus had at the

time when they parted from it.

496. Probable mode offormation ofcomet's tails. In order to ex-

plain the phenomena of comet's tails, it seems necessary to admit

the existence of a repulsive force by which certain particles of a

comet are driven off from the nucleus, and that these particles are

then acted upon by a more powerful repulsive force emanating
from the sun.

Fig. 119.

Let S represent the position of the sun, and ABC a portion of

a comet's orbit, the comet moving in the direction of the arrows.

Suppose, when the nucleus is at A, a particle of matter is expelled
from the head of the comet in the direction SAD. This particle

will still retain the motion which it had in common with the nu-

cleus, and this motion would carry the particle over the line DG
while the head is moving from A to C. When the nucleus reach-

es B, suppose another particle to be driven off in the direction

SBE. This particle will also retain the motion which it had in

common with the nucleus, and which would carry it over EH
while the head is moving from B to C. Thus, when the nucleus

has reached the point C, the particles which were expelled from
the head during the time of its motion from A to C will all be
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situated upon the line CHG. It is evident that this line will be
a curve, tangent at C to the radius vector SO produced, and al-

ways curving /rcw the region toward which the comet proceeds.

497. Comets with several tails. A transverse section of the tail

of a comet is not generally a circle, but an oval curve, more or

less elongated. In the case of Donati's comet, the greatest diam-

eter of this oval was about four times the least, and in the comet
of 1744 the ratio was probably still greater. The longest diam-

eter of the transverse section coincides nearly with the plane of

the orbit; in other words, the tail of a comet spreads out like a

fan, so that its breadth, measured in the direction of the plane of

the orbit, is greater than its breadth measured in a transverse di-

rection.

In order to explain this phenomenon, it seems necessary to ad-

mit that the repulsive force of the sun is not the same upon all

the particles which form the tail of the comet Those particles

upon which the repulsive force of the sun is very great will form

a tail which is turned almost exactly from the sun
;
but those

particles upon which the repulsive force of the sun is small will

form a tail which falls very much behind the direction of a radius

vector. If, then, the head of the comet consists of particles which

are unequally acted upon by the sun, the comet may have several

tails, or perhaps an indefinite number, whose axes occupy some-

what different positions, but 'all are situated in the plane of the

orbit. This theory will enable us to explain the striped appear-

ance of the tail of Donati's comet (see Plate VI., Fig. 2), as well as

the faint streamers which extended in a direction very nearly op-

posite to the sun. It also explains the very remarkable appear-

ance of the comet of 1744, which is commonly said to have had

six tails. When near perihelion, the head of the comet being be-

low the horizon, the tail was seen to extend above the horizon,

as represented in Plate V., Fig. 5.

498. Telescopic comets. Most comets are not attended by tails.

Telescopic comets seldom exhibit this appendage. They, how-

ever, generally become elongated as they approach the sun, and

the point of greatest brightness does not occupy the centre of the

nebulosity.

In many cases, the absence of a tail is probably owing to the
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smallness of the comet, and the consequent faintness of its light;

so that, although a tail is really formed, it entirely escapes obser-

vation.

In other cases, it seems probable that, by frequent approaches
to the sun, the comet has lost all of that class of particles which

are repelled by the sun, and which contribute to form a tail ; and

such comets exhibit only a slight elongation as they approach the

499. Quantity of matter in comets. The quantity of matter in

comets is exceedingly small. Comets have been known to pass
near to some of the planets and their satellites, and to have had

their own motions much disturbed by the consequent attractions,

without producing any sensible disturbance in the motion of the

planets or their satellites. Since the quantity of matter in comets

is inappreciable in comparison with the satellites, while their vol-

umes are enormously large, the density of the comet's nebulosity

must be incalculably small.

The transparency of the nebulosities of comets is still more re-

markable. Stars of the smallest magnitude have been repeated-

ly seen through comets of from 50,000 to 100,000 miles in di-

ameter, and, in the majority of cases, not the least perceptible

diminution of the star's brightness could be detected.

500. Do comets exhibit phases? Comets exhibit no phases like

those presented by the moon, and which might be expected from

a solid nucleus shining by reflected light Some have therefore

doubted whether comets shine simply by the borrowed light of

the sun. The following consideration proves that their light, at

least for the most part, depends on their distance from the sun.

A self-luminous surface appears of the same brilliancy at all dis-

tances as long as it subtends a sensible angle. Thus the surface

of the sun, as seen from Uranus, must appear as bright as it does

to us, only subtending a smaller angle. If, then, a comet shines

by its own light, it should retain its brilliancy as long as its di-

ameter has a sensible magnitude. Such, however, is not the case.

Comets gradually become dim as their distance increases
;
and

they vanish simply from loss of light, while they still retain a

sensible diameter.
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501. Cometary orbits. It was first demonstrated by Newton that

a body which revolves under the influence of a central force like

gravitation, whose intensity decreases as the square of the dis-

tance increases, must move in one of the conic sections
;
that is,

either a parabola, an ellipse, or an hyperbola. Several comets are

known to move in ellipses ofconsiderable eccentricity; the orbits

of most comets can not be distinguished from parabolas ;
while a

few have been thought to move in hyperbolas. Since the para-
bola and hyperbola consist of two indefinite branches which di-

verge from each other, a body moving in either of these curves

would not complete a revolution about the sun. It would enter

the solar system from an indefinite distance, and, passing through
its perihelion, issue in a different direction, moving off to an in-

definite distance, never to return. Hence bodies moving in para-
bolas and hyperbolas are not periodic ;

but comets moving in el-

liptic orbits must make successive revolutions like the planets.

It is, however, probable that the orbits which are treated as

parabolic are in fact very long ellipses, which differ but little

from parabolas in that portion described by the comet while it is

visible.

502. How to deduce the orbit of a comet from the observations.

The methods explained in Chapter XIV. for determining the or-

bits of the planets are generally quite inapplicable to the comets,

because these methods require observations to be made in particu-

lar portions of the orbit, and often involve an interval of several

years between the observations; but comets generally continue

in sight only a few weeks, and from these few observations it is

required to deduce the form and position of the orbit. Sir Isaac

Newton first pointed out the method of computing the orbit of a

comet from three observations of its position. This method was

published in the Principia in 1687, accompanied by a computa-

tion of the orbit of the remarkable comet of 1680. This method

has since been much simplified, and tables have been prepared by
which the computations are greatly facilitated.

In order to determine the orbit of a comet, we must therefore

know its direction in the heavens on three different days. These

observations may be embraced within an interval of 48 hours
;

but the longer the interval, the more reliable will be the orbit de-

duced from the observations. The computations are also much
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simplified when the interval from the first to the second observe

tion is exactly equal to the interval from the second to the third,

although this restriction is by no means a necessary one. We
will suppose, then, that we have three observations of a comet's

place as seen from the earth. These places are usually denoted

by right ascensions and declinations. We begin with converting
these places into longitudes and latitudes, which have reference to

the ecliptic, because we find it most convenient to refer the com*

et's motion to the plane of the earth's orbit

We now take from the Nautical Almanac the longitudes of the

sun for the same three instants of observation. These longitudes,

increased by 180, represent the longitudes of the earth as seen

from the sun. We then construct a diagram representing tho

earth's orbit, and set off upon it the places of the earth at the

three given dates. From each of these points we draw a line rep-

resenting the direction in which the comet was seen at the cor-

responding date. From these data it is required to deduce the

503. Principles assumed in computing the orbit. In computing
the orbit, we assume certain laws which have been verified in the

case of all the known members of the solar system. These laws

are,

1st. The plane of the orbit of the comet must pass through the

sun.

2d. The path described by the comet must be a conic section,

of which the sun occupies one of the foci; and since we are sure

that its orbit is quite eccentric, we know that it can not differ

much from a parabola. We therefore assume, in the first case,

that the orbit is a parabola.

3d. The motion of every heavenly body in its orbit about the

sun is such that the areas described by the radius vector are pro-

portional to the times in which they are described. Hence any
area divided by the time gives a quotient which is a constant

quantity for the same body, whether it be a planet or a comet.

4th. For different bodies revolving about the sun, the squares
of the quotients thus obtained are proportional to the parameters
of the orbits.

In applying these principles to determine the orbit of a comet,

we may first assume any position for the plane of the orbit. If
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this assumption does not violate any of the preceding principles,
we may be sure that we have found the true plane of the orbit.

Otherwise we must vary the position of this plane until we have

found one which does not conflict with either of these principles.

We next compute the comet's places from day to day in the sup-

posed orbit, and compare the observed places with the computed

places. These differences must not exceed the unavoidable errors

of observation. If they do, we must vary the assumed orbit until

the observed places agree with the computed places, within the

limits of those errors to which such observations are always lia-

ble. We are thus able to decide whether the orbit is truly a pa-

rabola, an ellipse, or an hyperbola, independently of any error in

our first hypothesis.

604. Method illustrated by a diagram. Let S represent the posi-

Fj 12Q
tion of the sun, and A, B, C
the positions of the earth

in its orbit at the dates of

the three observations, the

lengths and position of the

lines SA, SB, SC being giv-

en in the Nautical Almanac.

From A draw a line, AD,
to represent the direction in

which the comet was seen

\B at the first observation
;
and

from B and C, in like man-

ner, draw lines to represent

the directions of the comet

at the second and third observations. We know that at the date

of the first observation the comet was somewhere on the line AD,
but we do not know at what point of this line. If we assume

that the comet was at G, then, by Principle 1st of Art. 503, its

places at the other two dates will not only be on the lines BE,

OF, but in a plane passing through S and G. Also, by Principle

3d, Art. 503, the parabolic sectors SHG, SHK, must be equal to

each other. If the interval between the observations is only a

few days, the parabolic sectors will differ but little from the plane

triangles SHG, SHK, which must therefore be nearly equal.

These conditions alone will generally enable us to determine the
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position of the comet's orbit very nearly. If the parabolic sec-

tors are found to be exactly equal, and if the magnitude of these

sectors is such as is given by Principle 4th, Art. 503, we may be

sure that we have discovered the true orbit. By this method we

may, in less than an hour, deduce the approximate orbit of any
comet from three observations, embracing an interval of only a

few days.

505. Mode of computing the orbit. The actual computation of

the elements of a cometary orbit is founded upon the same prin-

ciples. The geometrical relations here stated are represented by
equations, and these equations are solved by successive approxi-
mations. Tables have been prepared which greatly facilitate the

computation, so that the approximate elements of a cometary or-

bit can be obtained by the labor of a few hours. The most accu-

rate possible determination of the orbit is only obtained by a care-

ful comparison of all the observations made during the entire pe-

riod of visibility, and this may involve a labor of several weeks.

The method here indicated is applicable to the determination

of the orbit of a planet as well as that of a comet. The motions

of planets and comets are governed by exactly the same laws;

and there is no essential difference in the mode of computing the

orbits, except that we generally assume that a comet moves in a

parabola, which is a conic section whose eccentricity is known
;

in other words, a cometary orbit involves one less unknown quan-

tity to be determined than a planetary orbit. The methods of

determining the planetary elements explained in Chapter XIV.
are applicable to the brighter planets ;

but when a new asteroid

is discovered, we are required to deduce an orbit at once from ob-

servations of a few days, and this is accomplished by the method

here indicated.

506. How a comet w known to be periodical. Since comets are

only seen in that part of their orbit which is nearest to the sun,

and since an ellipse, a parabola, and an hyperbola, for a consider-

able distance from perihelion, do not depart very widely from

each other, it is difficult to determine in which of these curves a

comet actually moves
;
but if a comet have an elliptic orbit, it

must return to perihelion after completing its revolution. If,

then, we find that two comets, visible in different years, moved in
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the same path, the presumption is that they were the same body,
reappearing after having completed its circuit in an elliptic orbit

;

and if the comet has been observed at several returns, this evi-

dence may amount to absolute demonstration.

The shortest periodic time of any comet at present known is

3 years j
the longest period which has been positively verified

by the return of the comet is 75 years ;
but there are several com-

ets whose period has been computed to exceed a century ;
and

the periods of some comets probably amount to many centuries.

Indeed, if a comet moves in a parabolic orbit, its periodic time
must be infinitely long ;

that is, it could never complete a revolu-

tion about the sun.

There are eight comets whose periods have been well establish-

ed, viz., Halley's, Encke's, Biela's, Faye's, Brorsen's, D'Arrest's,

Winnecke's, and Tuttle's.

Halley's Comet.

507. Soon after the publication of Newton's Principia, Ilalley,

an eminent English astronomer, computed from recorded obser-

vations the elements of a number of comets according to the meth-

od furnished by Newton. These elements were published in 1705.

On comparing these orbits, he found that a comet, which had been

observed by himself and others in 1682, followed a path which

coincided very nearly with those of cornets which had been ob-

served in 1607 and 1531. This led him to suppose that, instead

of three different comets, it might be the same comet revolving in

an orbit whose period was 75 or 76 years. lie accordingly pre-

dicted the reappearance of this body in 1758-9. He observed,

however, that as, in the interval between 1607 and 1682, the comet

passed near Jupiter, its velocity must have been augmented, and,

consequently, its period shortened by the action of that planet,

the comet ought not to be expected to appear until the end of

1758, or the beginning of 1759.

508. Predicted return ofHalley's comet. As the time approached

for the fulfillment of this prediction, two French astronomers,

Clairaut and Lalande, undertook to compute the disturbing effect

of the planets upon the comet, and thus determine its exact path,

with the time of its return to perihelion. The result of these com-

putations was to fix upon April 13, 1759, as the time of perihelion
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passage. Clairaut, however, stated that, on account of the small

quantities unavoidably neglected in his computations, the time

thus assigned might vary from the truth to the extent of a month.

The comet passed its perihelion on the 12th of March, just one

month before the time announced by Clairaut; and Laplace has

shown that if Clairaut had used in his calculations the mass of

Saturn as at present received, his prediction would have been in

error only 13 days.
Before the comet's next return in 1835, its path was computed

by several astronomers, and the most complete computations fixed

the time of perihelion at November 14, 1835. It actually passed
its perihelion on the 16th of November.

The mean distance of this comet from the sun is about 18 times

that of the earth, or a little less than the mean distance of Ura-

nus
; but, on account of the eccentricity of its orbit, its distance

from the sun at aphelion is considerably greater than that of Nep-
tune.

509. Physical peculiarities of Halley's comet. At its return in

1835, Halley's comet exhibited physical changes remarkable for

their magnitude and rapidity. The tail began to be formed about

a month before the perihelion passage, and commenced with an

emanation of nebulous matter from that part of the comet which

was turned toward the sun. This emanation resembled a brush

of electric light from a pointed wire in a dark room. As this

matter receded from the head, it seemed to encounter a resistance

from the sun, by which it was driven back, and carried out to vast

distances behind the nucleus, forming the tail. This emanation

took place only at intervals
;
and sometimes the nebulous matter

thus emitted presented the appearance of a second tail turned to-

ward the sun. At one time two, and at another time three nebu-

lous streams were observed to issue in diverging directions. See

Plate V., Fig. 2. These directions were continually varying, as

well as the comparative brightness of the emanations. Sometimes

they assumed the form of a swallow-tail. These jets, though very

bright at their point of emanation from the nucleus, faded rapidly

away, and became diffused as they expanded into the coma.

The tail seemed to be formed entirely of matter thus emitted

from the head and repelled by the sun. The velocity with which

this matter was driven from the sun was enormous, amounting to
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not less than two millions of miles per day. On account of the

feeble attraction of the nucleus, the matter thus repelled from the

head must mostly escape, and be lost in space, never to reunite

with the comet. Hence it seems inevitable that at each approach
to the sun the comet must lose some of those particles on which

the production of the tail depends, so that at each return the di-

mensions of this appendage must become smaller and smaller.

Upon comparing the different descriptions of this comet at its suc-

cessive returns to perihelion, it has been concluded that it is now
much smaller than it was in 1305. But the appearances in 1835

did not indicate any material diminution since 1759, so that we
must conclude that, if this comet is actually wasting away, the

process is a very gradual one.

EnckJs Comet.

510. The periodicity of this comet was discovered in 1819 by
Professor Encke, of Berlin, who identified the comet of that year

with those that had been observed in 1786, 1795, and 1805, and

which had been supposed to be different comets. He found its

period to be only about 1207 days, or 3 years, and he predicted

its return in 1822. This prediction was verified, and the comet

has been observed at every subsequent return to the sun, making

13 apparitions since 1819, and 17 returns for which we have ac-

curate observations.

At perihelion this cornet passes within the orbit of Mercury,

while at aphelion its distance from the sun is fths that of Jupiter.

511. Indications of a resisting medium. By comparing observa-

tions made at the successive returns of this comet, it is found that

the periodic time, and, consequently, the mean distance from the

sun, is subject to a slow but regular decrease, amounting to about

a day in eight revolutions. It also appears that this diminution

is not produced by the disturbing action of the planets.
In order

to explain the observed fact, Encke assumes that the interplan-

etary spaces are pervaded by an extremely rare medium, which

causes no sensible obstruction to the motions of dense bodies like

the planets, but which sensibly resists the motion of a mere mass

of vapor like a comet. The effect of such a resistance would be

a diminution of the comet's orbital velocity, in consequence of

which it would be drawn nearer the sun, and perform its revolu-
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tion in less time. It appears to follow from this hypothesis that,

after the lapse ofmany ages, not only this comet, but other comets,

and the planets also, must be precipitated upon the sun.

512. Objections to Encke's hypothesis. It has been objected to

Encke's hypothesis that no indication of a resisting medium has

been detected in the motion of other comets. Encke's answer to

this objection is that, m order to decide whether a comet is affect-

ed by a resisting medium, we require observations at three suc-

cessive returns of the comet to the sun. Now there are only
three comets for which we have such observations, viz., Halley's,

Encke's, and Faye's. We do not know whether Halley's comet

experiences resistance or not, because the disturbing influence of

the planets through an entire revolution has never yet been com-

puted with sufficient precision. Faye's comet, will be described in

Arts. 515, 516.

Biela s Comet.

513. In 1826, Captain Biela, an Austrian officer, discovered a

comet, which was afterward observed by other astronomers. The

path which it pursued was found to be similar to that of comets

vrhich had appeared in 1772 and 1805
;
and Biela concluded that

this body revolved in an elliptic orbit, with a period of about 63-

years.

This comet has since been observed at three returns in con-

formity with prediction, viz., in 1832, 1846, and 1852. It was

not seen in 1866, although its computed position was favorable

for observation, and there is reason to conclude that this comet

is permanently lost to our view.

At perihelion the distance of this comet from the sun is a little

less than that of the earth, while at aphelion its distance some-

what exceeds that of Jupiter.

The orbit of this comet approaches the earth's orbit within a

distance less than the sum of the semi-diameters of the earth and

comet The earth passes this point of its orbit on the 30th of

November. If Biela's comet should ever arrive at the same point

on the 30th of November, the earth must penetrate a portion of

the comet. In 1832, the comet passed this point on the 29th of

October a circumstance which created no little alarm.
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514. Division of Bields comet into two comets. In 1846, this

comet presented the singular phenomenon of a double comet, OF

two distinct comets moving through space side by side. See

'Plate V., Fig. 3. At first, one portion was extremely faint as com-

'pared with the other, but the fainter gradually increased, and by
the middle of February they were nearly equal in brightness ;

after which the variable comet began to diminish, and in about

a month disappeared, while the other continued visible several

weeks longer as a single comet. The orbits of these two bodies

were found to be ellipses entirely independent of each other
;
and

during their entire visibility in 1846, their distance apart was

about 200,000 miles.

Biela's comet reappeared in August, 1852, and continued visi-

ble about four weeks. The changes of relative brilliancy of the

two comets were similar to those observed in 1846. At first one

body was fainter than the other; subsequently the fainter became

the brightest ; and, a few days later, it again became the fainter

of the two. The distance of the two bodies from each other in

1852 was about 1,500,000 miles. It has been found by compu-
tation that near the close of December, 1845, Biela's comet passed

extremely near and probably through the stream of November

meteors, Art. 529. It has been conjectured that this collision

may have produced the separation of this comet into two parts;

and that by subsequent encounters in 1859 and 1866 it may have

been farther subdivided and dissipated, so as to have become en-

tirely invisible to us.

Fayt?s Comet.

515. In 1843, M. Faye, of the Paris Observatory, discovered .1

comet, and determined its orbit to be an ellipse, with a period of

only 7 years. Le Verrier computed its orbit with great care, and

predicted its succeeding return to perihelion for April 3, 1851.

The comet was first seen November 28, 1850, very nearly in the

place assigned it by Le Verrier
;
and it reached its perihelion

within about a day of the time predicted.

The distance of Faye's comet from the sun at perihelion is 161

millions of miles, and at aphelion 565 millions. This comet is

remarkable as having an orbit more closely resembling in form

the orbits of the planets than any other cometary orbit known, its

eccentricity being only 0.55.

S
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516. Does Faye's comet afford evidence of a resisting medium?

The observations of Faye's comet at its first appearance embraced

a period of nearly six months, and enabled astronomers to com-

pute the orbit with uncommon precision. At its second appear-

ance, the observations embraced a period of more than three

months, and at its third appearance, in 1858, they embraced a pe-

riod of more than one month. All these observations may be

very accurately represented by an elliptic orbit, without supposing
that the comet has experienced any resistance from an assumed

ether. The comet made its fourth appearance in 1865, and its

observed positions agreed almost exactly with those which had

been predicted, showing that this body does not encounter any

appreciable resistance.

Encke's comet is therefore the only body at present known
which requires us to admit the existence of a resisting medium

;

and according to Professor Encke, this resistance is not apprecia-

ble beyond the orbit of Venus, and the density of the medium is

assumed to vary inversely as the square of the distance from the

sun. A resisting medium must produce an effect upon the mo-

tion of a comet, quite different from that which some persons
would anticipate. Such a medium would diminish the comet's

tangential velocity; that is, it would diminish its centrifugal force;

in consequence of which, the comet must be drawn nearer to the

sun, so that it would describe a smaller orbit. But, according to

Art. 245, when the orbit diminishes, the absolute velocity increases.

Hence we conclude, that the absolute velocity of a planetary or

cometary body is increased by encountering a resisting medium.

Brorseri's Comet.

517. In 1846, Mr. Brorsen, of Denmark, discovered a telescopic

cornet, which has been found to revolve around the sun in about

5 years. The date of its next arrival at perihelion was fixed for

September, 1851. Its position at that time was very unfavorable

for observations, and the comet was not found. It was, however,
seen at its subsequent return to perihelion in 1857. It was dis

covered at Berlin March 18th, and passed its perihelion March

29th, 1857.

The distance of this comet from the sun at perihelion is 62

millions of miles, being less than the distance of Venus; and at

aphelion 538 millions, which is somewhat greater than the dis-
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tance of Jupiter. Its periodic time is 2031 days. The orbit of

this comet, when projected on the ecliptic, is included wholly
within that of Biela.

This comet was not seen in 1862 on account of its unfavorable

position, but upon its subsequent return to perihelion in 1868 it

was observed within one degree of the place previously computed.

D'Arrest's Comet.

518. In 1851, Dr. D'Arrest, of Leipsic, discovered a faint tel-

escopic comet, whose orbit was computed to be an ellipse, having
a period of 6.4 years. It was accordingly predicted that it would
return again to the sun about the last of November, 1857. On
account of its great southern declination, this comet was not visi-

ble in the northern hemisphere, but it was discovered at the Cape
of Good Hope in December, 1857, and followed until the middle

of January. It passed the perihelion November 28th, and pur-
sued almost exactly the path predicted for it in 1851. Its dis-

tance from the sun at perihelion is 111 millions of miles, and at

aphelion 546 millions.

WinnecJce's Comet and Tuttk's Comet.

519. In 1819, M. Pons, at Marseilles, discovered a comet, which

he continued to observe for 38 days. Its orbit was computed by
Encke to be an ellipse, with a period of 5.6 years. This comet

was not seen again until 1858, when it was rediscovered by Dr.

Winnecke, at Bonn, having made seven revolutions since its ap-

parition in 1819, making the time of one revolution 5.54 years.

Its distance from the sun at perihelion is 73 millions of miles, and

at aphelion 526 millions. Owing to its unfavorable position, this

comet was not seen in 1863, but it was seen again in the summer

of 1869, pursuing very nearly the path predicted.

In 1858 a small comet was discovered at Cambridge, Mass., by

Mr.Tuttle, and was observed for eleven weeks. Its orbit was

elliptical, and its elements were almost identical with those of a

comet which had been observed in 1790, and it was predicted that

it would return again to perihelion Nov. 30th, 1871. In 1871 the

comet was found very near the place computed for it, and thus

its periodical character was established. Its perihelion distance

is a little greater than that of the earth
;

its aphelion distance

greater than that of Saturn
;
and its period 13.64 years.
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The Comet of 17'44.

520. The comet of 1744 was the most splendid comet of the

18th century. Its distance from the sun at perihelion was only
about one fifth that of the earth, or a little more than one half the

mean distance of Mercury. Three weeks before the perihelion

passage, its light was equal to that of Jupiter at his greatest bril-

liancy, and a fortnight before perihelion its light was little infe-

rior to Yenus. On the day of perihelion passage the head was

seen with a telescope at noonday, and many persons followed it

with the naked eye some time after the sun had risen.

The tail of this comet attained a length of 19 millions of miles.

A fortnight before perihelion the tail appeared divided into two

branches, one 7 and the other 24 long. On the day before peri-

helion the tail exhibited remarkable curvature, being nearly in

the form of a semi-parabola. Then followed a week of cloudy

weather, during which the comet could not be observed
;
but six

days after perihelion, about two hours before sunrise, when the

head of the comet was far below the horizon, the extremity of the

tail rose above the horizon, and appeared spread out like a fan, as

shown in Plate V., Fig. 5. This portion presented the appearance
of six tails, extending from 30 to 44 from the head of the comet

The Comet of 1770.

521. The comet of 1770 is remarkable for its near approach to

the earth and Jupiter, and the consequent changes in the form of

its orbit. This comet was found to describe an elliptic orbit, with

a periodic time of about 5 years. By tracing back the comet's

path, it was found that early in 1767 it was very near to Jupiter,
the distance between the two bodies being at one time only -y$th

of the comet's distance from the sun, in which position the influ-

ence of the planet must have been three times greater than that of

thesun.
For,byArt.256,G:<7::^:|::^:l::l:3.

The

motion of the comet at this part of the orbit being nearly in the

same direction as that of Jupiter, it was subjected for several

months to a powerful disturbance from that planet ;
and the small

ellipse in which the comet was seen to move in 1770 was the re-

sult of Jupiter's attraction. Previous to that time it had been

moving in an orbit requiring 48 years for a revolution, and its
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perihelion distance was about 300 millions of miles, at which dis-

tance it could never be seen from the earth.

This comet has not been seen since 1770. Its observation on

its first return in 1776 was rendered impossible by its great dis>

tance from the earth, and before another revolution could be ac-

complished it again passed very near to Jupiter. In August,

1779, the distance of the comet from Jupiter was only T|T of its

distance from the sun, in which position the action of the planet

must have exceeded that of the sun 230 times. For G : g : :

:!::!: 230. In consequence of this attraction, the orbit was so

changed that the time of revolution became 16 years, and its peri-

helion distance again became about 300 millions of miles, at which

distance the comet can not be seen from the earth. Thus this

comet has been entirely invisible from the earth both before and

since the year 1770. The annexed diagram shows the form of

the orbit of this comet in 1770, and its relation to the orbits of the

earth and Jupiter.

Fig. 121.

522. Mass of this comet In July, 1770, this comet made a nearer

upproach to the earth than any other comet on record, its distance

at one time being only 1,400,000 miles. In this position, the nebu-

losity surrounding the nucleus subtended an angle of 2 23', or

nearly five times that of the moon. Laplace has computed that

if the mass of this comet had been equal to that of the earth, it

would have changed the earth's orbit to such an extent as to have
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increased the length of the year by 2h. 48m. But it is proved
from astronomical observations that the length of the year has

not been increased by a quantity so large as two seconds, from

which it is inferred that the mass of the comet can not have been

so great as -njVo^ f the mass of the earth.

The mass of the comet must indeed have been smaller than

this, for, although the comet approached Jupiter within a distance

less than that of his fourth satellite, the motions of the satellites

suffered no perceptible derangement

The Great Comet 0/1843.

523. One of the most brilliant comets of the present century
was the great comet of 1843. It was seen in many parts of the

world on the 28th of February, at midday, close to the sun
;
and

soon after this, it became visible as a very conspicuous object in

the evening twilight. The apparent length of its tail varied from

50 to 70 degrees, and its greatest real length was about 120 mil-

lions of miles. At perihelion this comet came almost in contact

with the sun's disc, and it has been computed that it must have

become 2000 times hotter than red-hot iron. For several days
after perihelion the tail exhibited a decided fiery appearance.
The heat to which it had been subjected was doubtless the cause

of its extraordinary tail, which not merely attained an enormous

length, but was formed with astonishing rapidity.

This comet moved in a very elongated ellipse. Attempts have

been made to identify it with comets which appeared in 1668 and

1689
;
but the most careful computations indicate that its period

amounts to about 170 years.

Donates Comet of 1858.

524. This comet was discovered at Florence by Donati in June,

1858, and for two months remained a faint object, not discernible

by the unaided eye. During the latter part of August, traces of

a tail were noticed. The comet passed through perihelion on Sep-

tember 29th, and was at its least distance from the earth on Oc-

tober 10th. The tail continually increased until October 10th,

when it had attained a length of 50 millions of miles, and sub-

tended an angle of 60. The nucleus of the comet was uncom-

monly large, and was intensely brilliant. It was not seen in Eu-

rope after the end of October, but in the southern hemisphere it
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was followed till March, 1859. This comet undoubtedly revolves

in an elliptic orbit, but the period can not be less than 1600 years,

and is probably about 2100 years. This comet is remarkable for

the changes which were noticed in the number and dimensions

of its nebulous envelopes, which were similar to those described

in Art. 491.

525. Is it possible for a comet to strike the earth? Since comets

move through the planetary spaces in every direction, it is quite

possible that in the lapse of time the earth may come in collision

with one ofthem. The comet of 1770 approached within 1,400,000

miles of the earth. In 1832, Biela's comet approached the earth's

orbit so near that a portion of the orbit must have been included

within the nebulosity of the comet
;
the earth was, however, at

that time distant many millions of miles from the comet. The

first comet of 1864 also approached within 60(^000 miles of the

earth's orbit. The consequences which would result from a col-

lision between the earth and a comet would depend mainly upon
the mass of the comet. If the comet had no solid nucleus, it is

probable that it would be entirely arrested by the earth's atmos-

phere, and no portion of it might reach the earth's surface.

That the earth may some time pass through the tail of a comet

is highly probable; and, indeed, we know of several cases in

which the earth has passed ver}
r near to the tail of a comet, if it

has not been actually enveloped in the nebulosity.

Shooting Stars.

526. Shooting stars aro those small luminous bodies which at

night are frequently seen to shoot rapidly across the heavens, and

suddenly disappear. They may be seen on every clear night, and

at times follow each other so rapidly that it is quite impossible

to count them. They generally increase in frequency from the

evening twilight throughout the night until the morning twilight ;

and, when the light of day does not interfere, they are most

numerous about 6 A.M.

527. Height, velocity, etc. By means of simultaneous observa-

tions made at two or more stations at suitable distances from each

other, we may determine their height above the earth's surface,

the length of their paths, and the velocity of their motion. It is
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found that they begin to be visible at an average height of 74

miles, and they disappear at an average elevation of 50 miles.

The average length of their visible paths is 42 miles. The aver-

age velocity relative to the earth's surface for the brighter class

of shooting stars amounts to 29 miles per second
;
and they come

in the greatest numbers from that point of space toward which the

earth is moving in its annual course around the sun.

528. The meteors of August and November. Shooting stars are

most numerous in the month of August; and about the 10th of

August the number is five times as great as the average for the

entire year. The paths of most of them then diverge from the

constellation Perseus, a region about 40 north of that point to-

ward which the earth at that time is moving.
In the year 1833, shooting stars appeared in extraordinary num-

bers on the morfting of November 13th. It was estimated that

the number visible at a single station could not have been less

than 200,000. They seemed to emanate chiefly from a point in

the constellation Leo, which is about 10 north of that point in

the heavens toward which the earth at that time was moving. A
similar exhibition took place on the 12th of November, 1799, ns

also on several other years about the same day of November.

A brilliant display of meteors was observed in Europe on the

morning of November 14th, 1866, and again in the United States

on the morning of November 14th, 1867, and also in 1868.

529. Meteoric orbits, etc. Ilaving determined the velocity and

direction of a meteor's path with reference to the earth, we can

compute the direction and velocity of the motion with reference

to the sun. In this manner it has been shown that these bodies,

before they approached the earth, were revolving about the sun

in ellipses of considerable eccentricity. In some instances the

velocity has been so great as to indicate that the path differed lit-

tle from a parabola.
Thus we see that ordinary shooting stars are bodies moving

through space in paths similar to the comets; and it is probable

that they do not differ materially from comets except in their di-

mensions, and perhaps also in their density.

Their light probably results from the heat generated by the

compression of the air before them. It has been objected that at
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the height of 50 miles the atmosphere is too rare to develop so

much heat. But we know that the motion of a large body mov-

ing about 30 miles per second is entirely lost in a second or two,
and this motion, communicated to the particles of the surround-

ing air, must be sufficient to develop an enormous amount of

heat and light.

We also conclude that shooting stars are not distributed uni-

formly through space, but many of them are grouped together,

forming complete or incomplete rings of minute bodies revolving

together around the sun. These rings are so situated that the

earth encounters one of them annually on the 10th of August,
and another occasionally on the 12th of November, furnishing
meteoric displays of unusual splendor. The plane of the August
zone appears to be nearly perpendicular to the plane of the earth's

orbit
;
and this is the reason why at that time the radiant point

is found so far distant from the ecliptic.

Detonating Meteors.

530. O i-d inary shooting stars are not accompanied by any audi-

ble sound, though sometimes seen to break into pieces. Occa-

sionally meteors of extraordinary brilliancy are succeeded by an

explosive noise. These have been called detonating meteors. On
the morning of November loth, 1859, a meteor passed over the

southern part of New Jersey, and was so brilliant that its flash

attracted attention in the presence of an unclouded sun. Soon

after the flash, there was heard a series of terrific explosions,

which were compared to the discharge of a thousand cannon.

From a comparison of numerous observations, it was computed
that the height of this meteor when first seen was over 60 miles

;

and when it exploded its height was 20 miles. The length of its

visible path was more than 40 miles. Its velocity relative to the

earth was at least 20 miles per second
;
but its velocity relative

to the sun was about 28 miles per second, indicating that it was

moving about the sun in a very eccentric ellipse, or perhaps a

parabola.
On the 2d of August, 1860, in the evening, a magnificent fire-

ball was seen throughout the whole region from Pittsburg to New

Orleans, and from Charleston to St. Louis. A few minutes after

its disappearance there was heard a tremendous explosion like

the sound of distant cannon. The length of its visible path was
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about 240 miles, and its time of flight was 8 seconds, showing a

velocity of 30 miles per second. Its velocity relative to the sun

was 24 miles per second.

531. Number, velocity, etc. The number of detonating meteors

recorded m scientific journals is over 800. Their average height
at the first instant of apparition is 92 miles, and at the instant of

vanishing is 32 miles. Their average velocity is 19 miles per
second.

Comparing these results with those derived from the ordinary

shooting stars, we conclude that the two classes of bodies do not

probably differ much from each other except in size and density.
The noise which succeeds the appearance of a detonating meteor

is perhaps due to the collapse of the air rushing into the vacuum
which is left behind the advancing meteor. No audible sound

proceeds from ordinary shooting stars, because they are small

bodies, of feeble density, and are generally consumed while yet
at an elevation of 50 miles above the earth's surface.

Aerolites.

532. There is no evidence that any thing coming from ordinary

shooting stars ever reaches the earth's surface
;
but occasionally

solid bodies descend to the earth's surface from beyond the earth's

atmosphere. These are called aerolites. In December, 1807, a

meteor of great brilliancy passed over the southern part of Con-

necticut, and soon after its disappearance there were heard three

loud explosions like those of a cannon, and there fell a shower of

meteoric stones. The entire weight of all the fragments discov-

ered was at least 300 pounds. The specific gravity of these stones

was 3.6; their composition was one half silex, one third oxyd of

iron, and the remainder chiefly magnesia. The length of the vis-

ible path of this meteor was at least 100 miles, and its velocity

several miles per second.

In May, 1860, an aerolite exploded over Eastern Ohio, and from

it descended a shower of stones whose entire weight was esti-

mated at 700 pounds. Their specific gravity was 3.54, and their

composition very similar to that of the meteor of 1807. There

are 20 well-authenticated cases in which aerolites have fallen in

the United States since 1807. The specific gravity of 16 of these

meteors ranged from 3 to 3.66.
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In July, 1847, an aerolite exploded over Bohemia, and from it

there were seen to descend two masses of iron, which together
weighed 72 pounds. Its specific gravity was 7.71. Its compo-
sition was 92 per cent, of iron, 5 per cent, nickel, with a small

quantity of cobalt, etc. There are one or two other cases in which
iron meteors have been known to fall to the earth ; and there have
been found over 100 other similar masses believed to be aerolites,

although the date of their fall is unknown.
The elements of which aerolites consist are the same as those

found in the crust of the earth
; yet the manner in which these

elements are combined is peculiar, so that the general aspect of
aerolites is sufficient to distinguish them from all terrestrial min-
erals.

533. Origin of aerolites. Various hypotheses have been pro-

posed to account for the origin of aerolites.

1st. It has been conjectured that they are formed in the atmos-

phere like rain or hail. This supposition is inadmissible, because,

allowing the aerolite to be once formed, there is no known cause

which could impel it in a direction nearly horizontal with a ve-

locity of several miles per second.

2d. It has been conjectured that aerolites are masses ejected
from terrestrial volcanoes. This supposition is inadmissible, be-

cause the greatest velocity with which stones have ever been

ejected from volcanoes is less than two miles per second, and the

direction of this motion must be nearly vertical
;
while aerolites

frequently move in a direction nearly horizontal, and with a ve-

locity of several miles per second.

3d. It has been conjectured that aerolites have been ejected from

volcanoes in the moon with a velocity sufficient to carry them out

of the sphere of the moon's attraction into that of the earth's at-

traction. This supposition is unsatisfactory, because the lunar

volcanoes are at present entirely extinct. If, then, aerolites once

belonged to the moon, they must have been projected from its

surface many years ago. Since that time they must have been

moving in orbits around some larger body, such as the earth or

the sun
;
that is, whatever may have been the first source of aero-

lites, they must now be regarded as satellites of the earth or the

sun.
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534. Orbits of aerolites. The facts which have been established

respecting shooting stars and detonating meteors can leave but

little doubt that aerolites are bodies revolving about the sun like

the planets and comets, and are encountered by the earth in its

annual motion around the sun
;
and it is probable that the chief

difference between these three classes of bodies depends upon their

size and density.

We hence conclude that the interplanetary spaces, instead of

being absolutely void, are filled with a countless number of mi-

nute bodies, whose aggregate mass must be very great The com-

ets, like the earth, must encounter an immense number of these

bodies, and a part of their motion must be thereby destroyed.
This effect may be appreciable in the case of the periodic comets,

although it is thus far inappreciable in the case of the earth and

the other planets.

CHAPTER XIX.

THE FIXED STARS THEIR LIGHT, THEIR DISTANCE, AND
THEIR MOTIONS.

535. What is a fixed star ? The fixed stars are so called because

from century to century they preserve almost exactly the same

positions with respect to each other. Many of the stars form

groups which are so peculiar that they are easily identified ; and

the relative positions of these stars are nearly the same now as

they were two thousand years ago. Accurate observations, how-

ever, made with telescopes, have proved that many, and probably
all of the so-called fixed stars, have a real motion. There are,

however, only about 30 stars whose motion is as great as one sec-

ond in a year, and generally the motion is only a few seconds in

a century.

530. How the fixed stars are classified. The stars are divided

into classes according to their different degrees ofapparent bright-

ness. The most conspicuous are termed stars of the first magni-
tude

;
those which are next in order of brightness are called stars

of the second magnitude, and so on, the first six magnitudes em-

bracing all which can be distinctly located by the naked eye
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Telescopic stars are classified in a similar manner down to the

twelfth, and even smaller magnitudes.
The distribution of stars into magnitudes is arbitrary, and as-

tronomers have differed in the magnitude they have assigned to

the same star. According to the best authority, the number of

stars of the first magnitude is 20
;
of the second magnitude, 34

;

third, 141; fourth, 327; fifth, 959; and sixth, 4424; making 5905

stars visible to the naked eye. Of these only about one half can

be above the horizon at one time
;
and it is only on the most fa-

vorable nights that stars of the sixth magnitude can be clearly

distinguished by the naked eye. Even then, only the brighter
stars can be seen near the horizon.

The number of stars of the seventh magnitude is estimated at

13,000 ; eighth magnitude, 40,000 ;
and ninth magnitude, 142,000 ;

making about 200,000 stars from the first to the ninth magnitude.
It is estimated that the number of stars visible in Herschel's re-

flecting telescope of 18 inches aperture was more than 20 mil-

lions
;
and the number visible in more powerful telescopes is still

greater.

537. Comparison of the brightness of the stars. Sir W. Ilerschel

estimated that if an average star of the sixth magnitude be taken

as unity, the light emitted by an average star of the fifth magni-

tude will be represented by 2
;
one of the fourth magnitude by

6
;
of the third magnitude by 12

;
the second magnitude by 25

;

and the first magnitude by 100. There is, however, considerable

variety in the brightness of stars that are classed as of the same

magnitude. The light of Sirius, the brightest star in the heavens,

is from 5 to 10 times as great as some of the stars of the first

magnitude, and more than 300 times as great as an average star

of the sixth magnitude.

538. Cause of this diversity of brightness. It is probable that

these varieties of magnitude are chiefly caused by difference of

distance rather than by difference of intrinsic splendor among

the objects themselves. Those stars which are placed immediate-

ly about our solar system appear bright in consequence of their

proximity, and are called stars of the first magnitude; those which

lie beyond are more numerous, and appear less bright, and are

called stars of the second magnitude ;
and thus, as the distance
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of the stars increases, their apparent brightness diminishes, until

at a certain distance they become invisible to the naked eya
Some deviations from this general rule are to be expected. In

fact, some of the fainter stars are among those which are nearest

to us.

539. Have the fixed stars a sensible disc? When a telescope is

directed to a planet, the planet appears with a distinct disc, like

that which the moon presents to the naked eye. But it is differ-

ent even with the brightest of the fixed stars. The telescope, in-

stead of magnifying, actually diminishes them. A star viewed by
the naked eye appears surrounded by a radiation, and the ap-

pearance may be represented by a dot with rays diverging from

every side of it. The telescope cuts off this radiation, and exhib-

its the star as a lucid point of very small diameter, even when
the highest magnifying powers are employed. With a power of

6000, the apparent diameter of the stars seems less than with lower

powers.
The brighter stars, when viewed with the best telescope, do,

however, exhibit a small disc
;
but this disc is spurious, and prob-

ably arises from the dispersion of light in passing through the

earth's atmosphere. That these discs are not real is proved by
the fact that they are not magnified by an increase of telescopic

power, and also by the fact that, in the occultation of a bright star

by the moon, its extinction is absolutely instantaneous, not the

smallest trace of gradual diminution of light being perceptible.

540. How do the stars become visible to us ? The term magnitude

applied to the stars is therefore used to designate simply their

relative brightness. None of the stars have any measurable mag-
nitude at all. There is, however, reason to believe that the ab-

solute diameters of the stars are very great; hence we are com-

pelled to conclude that the distance of these bodies is so enormous

that their apparent diameter seen from the earth is 6000 times

less than any angle which the naked eye is capable of appre-

ciating.

Stars, then, become sensible to the eye, not by subtending an

appreciable angle, but from the intensity of the light which they
emit. The quantity of light which the eye receives from a star

varies inversely as the square of its distance. At a certain dis-
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tance this light is insufficient to produce sensation, and the star
becomes invisible.

When a star becomes invisible to the naked eye, the telescope
may render it visible by uniting in the image as many rays as can
enter the aperture of the object-glass. The increase of illumina-
tion from the use of a telescope will depend upon the ratio of the
area of the aperture of the object-glass to that of the pupil of the

eye. By augmenting the aperture of the telescope we may there-
fore increase the apparent brightness of an object, so that a star
of the sixth magnitude may appear as bright as a star of the first

magnitude does to the naked eye.

541. Twinkling of the stars. The scintillation, or twinkling of
the stars, which contrasts so strongly with the steady light of the

principal planets, is an optical phenomenon, supposed to be due
to what is termed the interference of light. Humboldt, the cele-

brated traveler, states that under the serene sky of Cumana, in

South America, the stars do not twinkle after they have attained

an elevation, on the average, of 15 above the horizon.

542. Division into constellations. For the sake of more readily

distinguishing the stars, they have been divided into groups
called constellations. These constellations are represented under

the forms of various animals, such as bears, lions, goats, serpents,

and so on. In some instances we may easily imagine that the ar-

rangement of the stars bears some resemblance to the object from

which the constellation is named, as, for example, the Swan and

the Scorpion; in other instances no such resemblance can be

traced. This fanciful mode of grouping the stars is of very an-

cient date, and is continued by modern astronomers chiefly for

the sake of avoiding the confusion that might arise from an al-

teration in the old system.

543. Names of the constellations. There are twelve constellations

lying upon the zodiac, and hence called the zodiacal constellations,

viz., Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio,

Sagittarius, Capricornus, Aquarius, and Pisces. These are also

the names of the twelve divisions of 30 each into which the

ecliptic has been divided
;
but the effect of precession, which

throws back the place of the equinox among the stars 50" a year,
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has caused a displacement of the signs of the zodiac with respect

to the corresponding constellations. The sign Taurus at present

occupies the constellation Aries, the sign Gemini the constellation

Taurus, and so on, the signs having retreated among the stars 30

since the present division of the zodiac was adopted.
The principal constellations in the northern half of the heavens,

in addition to such of the zodiacal ones as lie north of the celes-

tial equator, are :

Andromeda. Cassiopeia. Draco. Perseus.

Aquila. Cepheus. Hercules. Ursa Major.

Auriga, Corona Borealis. Lyra. Ursa Minor.

Bootes. Cygnus. Pegasus.
The principal constellations situated on the south side of the

equator, exclusive of the six southern zodiacal ones, are:

Argo Navis. Cetus. Ophiuchus.
Canis Major. Crux. Orion.

Canis Minor. Eridanus. Piscis Australis.

Centaurus. Monoceros.

Others will be found upon celestial globes and charts, raising the

total number of constellations at present recognized by astrono-

mers to about eighty.

544 How particular stars are designated. Many of the brighter

stars had proper names assigned them at a very early date, as

Sirius, Arcturus, Rigel, Aldebaran, etc., and by these names they
are still commonly distinguished.

It was the custom in former times to indicate the locality of a

star by its position in the constellation to which it belonged ;
but

this method was found to be extremely tedious, besides being fre-

quently liable to misconception. Bayer, a German astronomer,

in 1604 published a series of maps of the heavens, in which the

stars of each constellation were distinguished by the letters of the

Greek and Eornan alphabets, the brightest being called a, the next

/3, and so on. Thus a Lyras denotes the brightest star in the con-

stellation Lyra, /3 Lyras the second star, and so on.

In consequence either of a want of proper care in assigning let-

ters to the stars, or perhaps from a real change of brightness of

the stars since the time of Bayer, we sometimes find that the

brightness of the stars in a constellation does not follow the order

of the letters by which they are distinguished. Thus a Draconis
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is not so bright as either
/3

or y of the same constellation. Flam-

steed, the first astronomer royal at Greenwich, distinguished the
stars of each constellation -by the numerals 1, 2, 3, etc., and stars

are often referred to by these numbers. In large catalogues of

stars, the stars are usually numbered continuously from begin-

ning to end in the order of their right ascensions.

545. Remarkable constellations enumerated. One of the most con-

spicuous constellations in the northern firmament is Ursa Major,
or the Great Bear, in which we find seven stars which may easily
be conceived to form the outline of a dipper, of which the two

brightest are nearly in a straight line with the pole star, and are

hence called the pointers. They are not far from the zenith at

New Haven at 10 o'clock in the evening in the month of April.
The constellation Cassiopeia presents six stars which may be

conceived to form the outline of a chair. It is not far from the

zenith at 10 o'clock in the evening in the month of October.

The constellation Ursa Minor contains seven stars which may
also be conceived to form, the outline of a dipper, the pole star

forming the extremity of the handle. The principal stars of

these three constellations are represented in Fig. 2, page 14.

The constellation Orion is one of the most magnificent in the

heavens, and with some imagination may be conceived to resem-

ble a great giant. It is in the south at 10 o'clock in the evening
in the month ofJanuary. To the left of Orion, and a little below

it, is then seen the star Sinus, which far surpasses all others in

brilliancy.

The square of Pegasus is formed by four moderately bright

stars, which appear at a considerable altitude above the horizon

in th,e southern quarter of the sky about 10 in the evening in the

middle of October.

The Pleiades form a group of stars in the constellation Taurus.

The naked eye discovers six or seven, but in the telescope up-

ward of two hundred are revealed. This group passes the merid-

ian at 10 o'clock in the evening in the month of December. A
little below, and to the left of the Pleiades, is a wedge of stars

called the Hyades, of which Aldebaran is the conspicuous member.

546. Catalogues of stars. Various catalogues of stars have been

formed, in which are indicated their right ascensions and declina-

T
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tions for a certain epoch. Hipparchus is believed to have been

the first who undertook such a compilation, 128 years before the

Christian era; His catalogue included 1022 stars, and has been

preserved to us in the Almagest of Claudius Ptolemy. Some
modern catalogues contain a much larger number of stars. The

British Association catalogue contains 8377 stars; the catalogue
of Lalande contains 47,390 stars; Cooper's catalogue contains

60,066 stars near the ecliptic ;
and the entire number tabulated

at the present time amounts to several hundreds of thousands.

547. Periodic stars. Some stars exhibit periodical changes in

their brightness, and are therefore called periodic stars. One of

the most remarkable of this class is the star Omicron Ceti, often

termed Mira, or the wonderful star. This star retains its greatest

brightness for about 14 days, being then usually equal to a star

of the second magnitude. It then decreases, and in about two

months ceases to be visible to the naked eye. After remaining
thus invisible for six or seven months, it reappears, and increases

gradually for two months, when it recovers its maximum splen-

dor. It goes through all its changes in 332 days, and in 1879 its

maximum brilliancy occurred on the llth of September. At the

times of the least light, it becomes reduced to the tenth or twelfth

magnitude.
Another remarkable periodic star is Algol, in the constellation

Perseus. It generally appears of the second magnitude, and con-

tinues thus for about 61 hours. It then diminishes in brightness,

and in less than four hours is reduced to a star of the fourth mag-

nitude, and thus remains about twenty minutes. It then in-

creases, and in about four hours more it recovers its original splen-

dor. The exact period in which all these variations are performed
is 2d. 20h. 48m. 55s. It was at its minimum of brightness in

1879, November 21st, at 8h. 6m. in the evening, New Haven

time, from which data the time of any other minimum can be

computed.
There are more than 100 stars known to be variable to a great-

er or less extent. The periods of these changes vary from a few

days to many years. The star 34 Cygni varies from the third to

the sixth magnitude in a period of about 18 years. The bright

star Capella, in the constellation Auriga, is believed to have in-

creased in lustre during the present century, while within tho
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same period one of the seven bright stars (8) in Ursa Major has

probably diminished. Many instances of a similar kind might be
mentioned.

548. Cause of this periodicity. These phenomena have been ex-

plained, 1st, by supposing that a dark, opaque body may revolve
about the variable star, and at certain times intercept a portion of
its light; or, 2d, that a nebulous body of great extent may re-

volve round the star, and intercept a portion of its light when in-

terposed between us and the star. 3d. The stars themselves may
not be uniformly luminous all over their surfaces, but occasion-

ally, from their axial rotations, present toward the earth a disc

partially covered with dark spots, thereby shining with a dimmer

light. 4th. Some stars may have the form of thin flat discs, and

by rotation present to us alternately their edge and their flat side,

producing corresponding changes of brightness.

We have seen, Art. 174, that the light of our sun exhibits peri-

odical changes ;
in other words, our sun is a variable star with a

period of about eleven years. It seems most philosophical to

conclude that the changes in the periodic stars are due to causes

analogous to those which exist in our own system ;
and it is not

surprising that among the immense multitude of stars a few

should be found in which the changes of brightness are far

greater than in the case of our sun.

549. Temporary stars. Several instances are recorded of stars

Fu-ldenly appearing where none had before been observed, some-

times surpassing the light of stars of the first magnitude, re-

maining thus for a short time, and then gradually 'fading away.
The first on record was observed by Hipparchus 134 B.C., the

disappearance of which is said to have led that astronomer to

compile the star-catalogue bearing his name. In the year 389

A.D. a star blazed forth near a Aquilo3, which shone for three

weeks, appearing as splendid as the planet Venus, after which it

disappeared, and has never since been seen. In the autumn of

1572 a new star suddenly appeared in the constellation Cassiopeia.

When first noticed it was as bright as Sirius, the brightest star in

our firmament; and it finally attained such splendor that it was

distinctly visible at midday. In about a month it began to di-

minish, and in sixteen months it entirely disappeared.
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Another temporary star became suddenly visible in Ophiuchus
in 1604, and exceeded Jupiter in splendor. It remained visible

till 1606, and then disappeared.

In 1848 a star of tne fourth magnitude was seen in the constel-

lation Ophiuchus, in a place where no star had ever been observed

before. After a few weeks it declined in brightness, and has now
faded away to the twelfth magnitude, so that it can not be seen

without a superior telescope. It is possible that the temporary
stars do not differ from the periodic stars except in the length ot

their periods.

550. Distance of the fixed stars. That the distance of the fixed

stars from the earth is immense is proved by the following con-

siderations. The earth, in its annual course around the sun, re-

volves in an orbit whose diameter is 190 millions of miles. The
station from which we observe the stars on the 1st of January is

distant 190 millions of miles from the station from which we view

them on the 1st of July ; yet from these two remote points the

stars present the same appearance, proving that the diameter of

the earth's orbit must be a mere point compared with the distance

of the nearest stars.

551. Annual parallax. The greatest angle which the radius of

the earth's orbit subtends at a fixed star is called its annual paral-

lax. Numerous attempts have been made to measure the amount

of this parallax. Suppose a star to be situated at the pole of the

ecliptic, and that it is near enough to the earth to have a sensible

Fi" 122 parallax. Then, while the earth travels round

the sun, the star, as projected on the distant firma-

ment, will appear to describe a small circle, ABCD,
/ "X

J 5 )
c waose centre, S, is on the line joining the sun and

\ / star
;
and the diameter of this circle will dimin-

ish as the distance of the star from the earth in-
B

creases.

If the star is situated in the plane of the ecliptic, then, for three

rig 123
months of the year, it will appear to move a little

s to the east of its mean position, and in the next

three months it will return to its first position. It

will then appear to move a little to the west of its mean position,

and afterward return to its first position, its apparent motion be-

ing confined to a straight line, AC.
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If the star is situated between the ecliptic and its pole, the mo-
tion of the earth about the sun will give to the star

Fitr

an apparent motion in an ellipse, ABCD, whose

eccentricity will increase as the star's latitude de-

creases.

If, then, a fixed star had any considerable paral-

lax, it would be easy to discover it by measuring accurately its

position from one season to another
; but, among the many thou-

sand stars which have been carefully observed by astronomers,
not one has been found which exhibits a parallax exceeding one
second.

552. Parallax of Alpha Centauri. Observations made upon the

star Alpha Centauri, one of the brightest stars of the southern

hemisphere, indicate an annual parallax of -jj-ths of a second.

Having determined the parallax, we can compute the distance of

the star by the proportion
sin. 0".92 : 1 : : 95 millions of miles : the distance of the star,

which is found to be twenty millions of millions of miles. This

distance is so immense that a ray of light, moving at the rate of

192,000 miles per second, requires 3-^ years to travel from this

star to the earth. We do not see the star as it actually is, but it

shines with the light emitted 3-j years ago. Hence, if it were

obliterated from the heavens, we should continue to see it for

more than three years after its destruction
; yet Alpha Centauri

is probably our nearest neighbor among the fixed stars.

553. How differences ofparallax may be detected. Since the best

astronomical observations are liable to minute errors, which ren-

der it difficult to determine a star's absolute place with the accu-

racy required for the measurement of parallax, astronomers have

sought for some method of detecting parallax which shall be free

from the errors of ordinary observations. The following method

has been proposed for this purpose.
s" rig. iC5.

Let S be a star which we will sup-

pose to have a visible parallax, and

let ABCD be the small ellipse which

it appears to describe in consequence
of the motion of the earth about the

sun. Let S' and S" be two other
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stars, so distant from the earth as to have no sensible parallax,

and situated on the axes of the ellipse ABCD, and suppose the

three stars to be included in the same field of the telescope. The

apparent distance of the star S from S' will change during the

year from AS' to CS', and its distance from S" will change from

BS" to DS". These distances can be measured with great exact-

ness by means of a micrometer
;
and these measurements are in-

dependent of the errors which affect the determination of the ab-

solute places of the stars. If the stars S' and S" have a small

parallax, then these observations will determine the difference of

parallax between the star S and the stars of comparison. When
we wish to select stars which have no appreciable parallax, we
choose those of the smallest magnitude, which for that reason are'

presumed to be at the greatest distance from the earth.

55-1. Parallax of 61 Cygni. By the method here indicated, the

parallax of the star 61 Cygni was determined by the great as-

tronomer Bessel, of Konigsberg, to be 0".35. The observations

of Mr. Johnson, at Oxford, make the parallax of this star 0".4:0
;

Struve, at Pulkova, makes the parallax 0".ol
;
and Auwers, at

Konigsberg, makes the parallax 0".56. The mean of these four

determinations is 0".45, indicating a distance of 4i millions of

millions of miles, a space which light would not traverse in less

than 7 years.

555. Parallax of other stars. No other star has yet been found

whose parallax exceeds half of a second. Capella has a parallax
of about a third of a second, and

j3 Centauri nearly half a second,

and there are six smaller stars whose parallax is not less than

about a quarter of a second. All the other stars of our firma-

ment are apparently at a greater distance from us
;
and if the dis-

tance of the nearest stars is so great, we must conclude that those

faint stars which are barely discernible in powerful telescopes are

much more distant. Ilence we conclude that we do not see them
as they now are, but as they were years ago ; perhaps, in some

instances, with the rays which proceeded from them several thou-

sands of years ago ;
and it is possible that they may have changed

their appearance, or have been entirely annihilated years ago, al-

though we actually see them at the present moment.



THE FIXED STARS. 295

556. Light of the sun compared with that of the fixed stars. The
fixed stars must be self-luminous, for no light reflected from our

sun could render them visible at the enormous distances at which

they are situated from us. Indeed, it is demonstrable that many
of the fixed stars actually give out as much light as our sun. It

is estimated that the light of our sun is 450,000 times greater than

that of the full moon
;
and it has been proved that the light of

the full moon is 13,000 times greater than that of Sirius; that is,

the light of the sun is about 6000 million times greater than that

of Sirius. Since the quantity of light which the eye receives

from a star varies inversely as the square of its distance, and since

the distance of Sirius is 800,000 times that of the sun, it follows

that, if Sirius were brought as near to us as the sun, its light

would be 640,000 million times as great as it appears at present ;

that is, the light emitted by Sirius is a hundred times that of our

sun. Many other fixed stars probably emit as much light as

Sirius; in other words, the fixed stars belong to the same class

of bodies as our sun, in respect of the amount of light which they

emit
;
and it is probable that many of them are bodies of at least

equal dimensions, otherwise the intensity of their illumination

must be very much greater than that of our sun.

557. Proper motion of the stars. The changes in the position of

the stars due to aberration and nutation are merely apparent

movements, and their exact amounts can be readily calculated for

any star. The effects of precession can be determined with equal

facility. It is found by observation, however, that most stars ex-

hibit a slow motion in the heavens which can not be thus ac-

counted for. After due allowance has been made for preces-

sion, aberration, and nutation, there still remain very appreciable

changes of position. These are not such periodical
motions to

and fro as would be produced by parallax ;
on the contrary, they

are uniformly progressive from year to year. A star in Ursa

Major (known as 1830 of Groombridge's catalogue) travels at the

rate of seven seconds in a year; 61 Cygni, whose parallax, as al-

ready mentioned, has been determined, is moving at the rate of

five seconds annually. The star Alpha Centauri has a proper

motion of nearly four seconds annually, and most of the brighter

stars of the firmament have a sensible proper motion. The result

of this motion is a slow but constant change in the figure of the
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constellations. In the case of several of the stars, this change in

2000 years has become quite sensible to the naked eye. The

proper motion of Arcturus in 2000 years has amounted to more
than one degree ;

that of Sirius and Procyon to three quarters of

a degree.

558. Cause of this proper motion. There are two ways in which

such movements may be explained. Either the star itself may
be supposed to have a real motion through space, or the sun, at-

tended by the planets, may have a real motion in a contrary di-

rection to that of the star's apparent one. On extending the in-

quiry to a great number of stars, it appears beyond doubt that

both causes must be in existence, certain stars having really an

independent motion in the heavens, which, to distinguish it from

merely apparent displacements, is termed improper motion, while

the solar system itself travels through space.

559. How could a motion of the solar system be detected ? If we

suppose the sun, attended by the planets, to be moving through

space, we ought to be able to detect this motion by an apparent
motion of the stars in a contrary direction, as, when an observer

moves through a forest of trees, his own motion imparts an ap-

parent motion to the trees in a contrary direction. All the stars

would not be equally affected by such a motion of the solar sys-

tem. The nearest stars would appear to have the greatest mo-

tion, but all the changes of position would appear to take place in

the same direction. The stars would all appear to recede from

Fig. 126. Fig. 127.

^** rx '"> *'
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A, that point of the heavens toward which the sun is moving,
while in the opposite quarter, B, the stars would become crowded

more closely together.
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560. Direction of the sun's motion. In 1783, Sir "William Her-

schel announced that the proper motion of a large portion of the.

stars might be explained by supposing that the sun has a motion

toward a point in the constellation Hercules. More recent and

extensive investigations have not only established the fact of the

solar motion, but likewise indicated a direction very nearly coin-

cident with that assigned by Herschel, viz., nearly toward the star

p Herculis. The average displacement of the stars, as estimated

by Struve, indicates that the motion of the sun in one year is about

150 millions of miles, which is about one fourth of the velocity
of the earth in its orbit, or five miles per second

; but, according
to the estimate of Airy, the motion of our solar system is about

twenty-seven miles per second.

561. Is the sun's motion rectilinear? It is probable that the solar

system does not advance from age to age in a straight line, but

that it revolves about the centre of gravity of the group of stars

of which it forms a member. It is also probable that this centre

of gravity is situated nearly in the plane of the Milky Way ;
and

if the orbit of the sun is nearly circular, this centre must be about

90 distant from p Herculis, the point toward which the solar sys-

tem is moving. Maedler conjectured that the brightest star in

the Pleiades was the central sun of the universe, but without suf-

ficient reason. The orbit of the solar system is probably so large

that ages may elapse before it will be possible to detect any change

in the direction of the sun's motion.

CHAPTEE XX.

DOUBLE STARS. CLUSTERS OF STARS. NEBULJE.

562. Double stars. Many stars which to the naked eye, or with

telescopes of small power, appear to be single, when examined

with telescopes of greater power are found to consist of two stars

placed close together. These are called double stars. Some of

these are resolved into separate stars by a telescope of moderate

power, as Castor, which consists of two stars at the distance of 5"

from each other, each being of the third or fourth magnitude.

Many of them, however, for their separation, require the most
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powerful telescope. Some stars, which to ordinary telescopes ap-

pear only double, when seen through more powerful instruments

are found to consist of three stars, forming a triple star
;
and there

are also combinations of four, five, or more stars, lying within

small distances from each other, thus forming quadruple, quintuple,

and multiple stars. Only four double stars were known until the

time of Sir W. Herschel, who discovered upward of 500, and sub-

sequent observers have extended this number to 6000.

563. Classification of double stars. Herschel divided double

stars into four classes, according to the angular distance between

the two components. The first class comprised those only in

which the distance between the two components does not exceed

4"
;
the second class those in which it exceeds 4", but falls short

of 8"; the third class extends from 8" to 16"; and the fourth

class extends from 16" to 32". Struve has subdivided some of

Herschel's classes, making thus eight classes instead of four.

When the distance between two stars exceeds 32", they are not

generally admitted into the catalogue of double stars.

In some instances the components of a double star are of equal

brilliancy, but it more frequently happens that one star is bright-

er than the other. Occasionally the inequality of light is so great
that the smaller star is almost lost in the refulgence of its bright-

er neighbor.

564. Colored stars. Many stars shine with a colored light, as

red, blue, green, or yellow. These colors are exhibited in strik-

ing contrast in many of the double stars. Combinations of blue

and yellow, or green and yellow, are not infrequent, while in

fewer cases we find one star white and the other purple, or one

white and the other red. In several instances each star has a

rosy light The colors of the two components are sometimes

complementary to each other that is, if combined, they would

form white light. In such cases, if one star is much smaller than

the other, we may attribute the difference of color to the effect of

contrast only. Thus, if the larger one be yellow, the companion

may incline to blue; or, if the former have a greenish light, the

latter may be tinged with crimson. Yet it can hardly be doubt-

ed that in many cases the light of the stars is actually of different

colors
;
that there exist in the universe numbers of yellow, blue,
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green, and crimson suns, whose refulgence must produce the most
beautiful effects upon the planets which circulate around them.

Single stars of a fiery red or deep orange color are not uncom-

mon, but there is no instance of an isolated deep blue or green
star; these colors are apparently confined to the compound stars.

Below the constellation Orion there is a star of the seventh

magnitude of a blood-red color, and near it is another star of sim-

ilar brightness, but presenting a pure white light.

The following are a few of the most interesting colored double

stars :

Name of star. Color of Inrger one. Color of smaller one.

y Andromedts Orange Sea-green.
a Piscium Pale green

- - - Blue.

/3 Cygni Yellow Sapphire-blue.
a Cassiopece Greenish - - - - Fine blue.

A star in Argo - - - - Pale rose - - - - Greenish-blue.

A star in Centaurus - - Scarlet Scarlet.

565. Stars optically double. If two stars be very nearly in the

same lino of vision, though one may be vastly more distant than

the other, they will form a star optically double, or one whose

components are only apparently connected by the near coinci-

dence of their directions as viewed from the earth. Thus the

two stars A and B, seen from

the earth at E, will appear in

close juxtaposition, although

they may be separated by an interval greater than the distance

of the nearest from the earth. The chances, however, are greatly

against there being a large number of stars thus optically joined

together. If the stars down to the seventh magnitude were scat-

tered fortuitously over the entire firmament, the chances against

any two of them having a position so close to each other as 4"

would be 9000 to 1. But more than 100 such cases of juxtapo-

sition are known to exist.

560. Binary stars. In the year 1780, Sir William Ilerschel un-

dertook an extensive series of observations of double stars, record-

ing the relative position of the components, and the distance by

which they were separated. By this means he hoped to be able

to detect a parallax. lie found that the distance and relative po-
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sition of the components of a double star were subject to change,

but the period of this change had no relation to the earth's mo-

tion about the sun. After twenty years of observations, he ascer-

tained and announced that these apparent changes of position

were due to real motions of the stars themselves; that the com-

ponents of several of the double stars moved in orbits in the same

manner as the planets move around the sun
;
that there exist si-

dereal systems consisting of two stars revolving about each other,

or, rather, both revolving round their common centre of gravity.

These stars are termed physically double, or binary stars, to dis-

tinguish them from other double stars in which no such periodic

change of position has been discovered.

567. The star Gamma Virginia. One of the most remarkable

of the binary stars is j Virginia This is a star of the fourth

magnitude, and its components are almost exactly equal. It has

been known to consist of two stars since 1718, their distance be-

ing then 7"; and since 1780 they have been regularly observed.

In 1836, their distance from each other

was less than half a second, so that no tel-

escope, unless of a very superior quality,

could show them otherwise than as a sin-

gle star. At present their distance from

each other is about 4". During the inter-

val of 146 years, the direction of one of the

components, as seen from the other, has

changed by nearly 360. The entire se-

ries of observations is well represented

by supposing each of the stars to revolve

about their common centre of gravity in

an ellipse whose major axis is 7", and in a

period of 169 years. In the annexed fig-

ure, the dotted line represents the appar-

ent orbit of one of the stars about the oth-

er, while the black line represents the form

of the actual orbit as computed. The orb-

it, as viewed from the earth, is seen somewhat obliquely, and the

apparent length of the mnjor axis is thereby somewhat reduced.

Fig. 129.

568. The star 70 Ojrftiuchi. The star 70 Ophiuchi consists of
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two components, one of the fourth, the rig. iso.
s

other of the seventh magnitude. Since

1779, one has made nearly a complete
revolution about the other in an el-

lipse whose major axis is about 8", and

the period is about 92 years. In the

annexed figure, the dotted line repre-

sents the apparent orbit of one of the

stars about the other, while the black

line represents the form of the actual

orbit as computed.

569. The star Xi Ursce, Majoris, etc. The star Urste Majoris
consists of two components, one of

the fourth, the other of the fifth mag-
nitude. Since 1780, one has com-

pleted an entire revolution about the

other, and has entered upon a second

period. The major axis of the orbit

is about 5", and the time of revolu-

tion 61 years. The annexed figure

represents both the apparent and the

real orbit.

The star % Herculis consists of two

components, one of the third, the other of the sixth magnitude.

Since 1782, one has completed two .entire revolutions about the

other in an ellipse whose major axis is 2", and the period of a

revolution is 36 years.

570. The star Alpha Ccntauri. The star a Centauri consists of

two components, one of the first, the other of the second magni-

tude. These two stars were observed by Lacaille in 1751
;
and

since 1826 their positions have been frequently and carefully ob-

served. The annexed figure represents
the apparent path from
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1826 to 1864, as well as the remaining portion of the probable

apparent orbit. The major axis of this orbit is about 30'', and

the time of one revolution about 80 years.

571. Number of the binary stars. There are 358 double stars

whose physical connection is believed to be established beyond
doubt. Of these, 13 have completed one or more revolutions

since they were first observed; 28 have completed more than a

half revolution
;
43 have completed more than a quarter revolu-

tion; and 156 have advanced more than twenty degrees in their

orbits. There are 558 double stars whose physical connection is

believed to be highly probable, if not entirely certain. Of these,

there are 22 whose periods are less than a century, and there are

36 whose periods are less than two centuries; but the periods of

most of the binary stars apparently exceed a thousand years.

572. The law ofgravitation extends to the fixed stars. It has been

proved, in Art. 249, that if a body revolve in an ellipse by an at-

tractive force directed toward the focus, that force must vary in-

versely as the square of the distance. But several of the binary
stars have been proved to revolve in ellipses ;

hence it is inferred

that the same law of gravitation which prevails in the solar sys-

tem prevails" among the sidereal systems.

573. Absolute dimensions of the orbit of a Unary star. If we knew
the distance of a binary star from the earth, we could compute
the absolute dimensions of the orbit described. Now a Centauri

and 61 Cygni are both binary stars, and their distances are toler-

ably well determined. The distance of a Centauri is 224,000
times the radius of the earth's orbit. Hence we shall have the

proportion
E: 224,000:: tang. 15": 16;

that is, the radius of the orbit described by the components of

a Centauri is 16 times the radius of the earth's orbit, or about
four fifths the distance of Uranus from the sun. In a similar

manner it has been computed that the radius of the orbit de-

scribed by the components of 61 Cygni is 34 times the radius of

the earth's orbit, which is considerably greater than the orbit of

Neptune.
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574. Mass of a Unary star computed. Since the relation be-
tween the dimensions of the orbit and the time of revolution de-
termines the relative masses of the central bodies, we are enabled
to compare the mass of a binary star with that of our sun, when
we know the absolute radius of the orbit, and the periodic time
of the star. In Art. 469 we found

If TO represent the mass of our sun, r the radius of the earth's

orbit, and t the time of the earth's revolution, or one year, then

M= .TO.

In the case of a Centauri, K has been found equal to 16, and
T= 80 years. Hence

that is, the mass of the double star a Centauri is about three fifths

that of our sun. In a similar manner it has been computed that

each of the stars which compose 61 Cygni is about one third of

our sun.

In 1862 it was discovered that Sir! us, the brightest star in the

heavens, is attended by a minute companion of the ninth magni-

tude, and it has since been proved that the two stars are physi-

cally connected. It lias been computed that the time of one rev-

olution is 49 years; that the mass of Sirius is 13.7 times that of

our sun, and the mass of its companion 6.7 times that of our sun.

The mass of 70 Ophiuchi and its companion has been computed
to be three times that of our sun.

575. Thefixed stars are suns. "We thus see that the stars are bod-

ies essentially like our sun. Some of them have a power of attrac-

tion nearly equal to that of our sun, and it is probable that others

have a greater power of attraction. Some of them emit more

light than our sun. The stars are therefore self-luminous bodies

of vast size, and are entitled to be called suns. In the binary stars,

then, we have examples, not of planets revolving round a sun, as

in our solar system, but of sun revolving round sun.

576. Triple stars. Besides the binary stars, there are some triple

stars which are proved to be physically connected. Of these the
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most remarkable is Zeta Cancri. It consists of three components,
one being of the sixth, and the other two

of the ninth magnitude. Since 1781, one

of these components has made a complete
revolution about one of the others in an

ellipse whose major axis is 2", and the pe-

riod of revolution is 58 years. During the

same period the other component has ad-

vanced more than 30 degrees in its orbit,

from which it is estimated that its period
of revolution must be about 500 years. The
annexed diagram represents the orbit of the

nearest component, and a portion of the or-

bit of the more remote component.
The star 51 Libra) is a triple star, two of

whose components are of the fifth magni-

tude, and the other of the seventh. It has

been computed that the nearer component makes a revolution in

105 years, and the more remote component in 600 or 700 years.

\ 577. Quadruple and quintuple stars. Lyra3 furnishes an in-

stance of a quadruple star, in which all the components are be-

lieved to be physically connected. Three of the components are

of the fifth, and the other of the sixth magnitude. The move-

ment of these stars is extremely slow, and, at the present rate of

motion, it will require nearly a thousand years for the nearest

component to complete one revolution, and many thousand years
for the most remote component.

Theta Orionis is a quintuple star, in which one of the com-

ponents is of the sixth magnitude, two are of the seventh, one of

the eighth, and the other is of the fifteenth magnitude. In the

best telescopes, a sixth star of extreme faintness may also be seen.

The relative position of these stars has not sensibly changed since

they were first observed by Herschel, and it is uncertain whether

they are physically connected.

578. Clusters of stars. In many parts of the heavens we find

stars crowded together in clusters, frequently in such numbers as

to defy all attempts to count them. Some of these clusters are

visible to the naked eye. In the cluster called the Pleiades,
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six stars are readily perceived by the naked eye, and we obtain

glimpses of many more. With a telescope of moderate power
188 stars can be counted.

In the constellation Cancer is a luminous spot called Preesepe,
or the bee-hive, which a telescope of moderate power resolves en-

tirely into stars. There is a remarkable group in the sword-han-

dle of Perseus, in which the stars are readily seen with a common
night-glass, though the whole have a blurred aspect to the naked

eye.

One of the most magnificent clusters in the northern hemi-

sphere occurs in the constellation Hercules, between the stars
r\

and . It is visible to the naked eye on clear nights as a hazy-

looking object, and the stars composing it are readily seen with a

telescope of moderate power. When examined in a powerful in-

strument, its aspect is grand beyond description ;
the stars, which

are coarsely scattered at the borders, come up to a perfect blaze

in the centre.

The richest cluster in the entire heavens is situated in the con-

stellation Centaurus, which belongs to the southern hemisphere,
and is called w Centauri. To the naked eye it appears like a neb-

ulous or hazy star of the fourth magnitude, while in the telescope

it is found to cover a space two thirds of the apparent diameter

of the moon, over which the stars are congregated in countless

numbers. See Plate VIL, Fig. 2.

We can not doubt that most of the stars in such a cluster as

to Centauri are near enough to each other to feel each other's at-

traction. They must therefore be in motion, and we must regard

this cluster as a magnificent astral system, consisting of a count-

less number of suns, each revolving in an orbit about the common

centre of gravity.

579. Nebulce.. In various parts of the firmament we discover

with a telescope dim patches of light, presenting a hazy, unde-

fined, or cloud-like appearance. These objects are called nebulce.

A large proportion are either round or oval, brighter toward their

centres than at their borders, and when viewed with small optical

power very much resemble comets, for which they are often mis-

taken. In more powerful instruments, such as those brought into

use by Sir William Herschel, a considerable number are readily

resolved into clusters of stars, like Prasepe, or the group in Per-

il
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sens above mentioned ;
some hundreds, or even thousands of stars

are wedged together within the space of two or three minutes of

arc or less. Many others present a mottled, glittering aspect

when thus viewed, which shows that they are similarly consti-

tuted, but too distant for our telescopes to separate them into

stars
; while, as might be expected, there are also very many that

the most powerful optical means hitherto devised have altogether

failed to exhibit otherwise than as faint, cloud-like objects. Very

many of them have the same form and general appearance as the

resolvable nebulae seen in common telescopes, and hence there is

reason for supposing them to be similar clusters of stars, but situ-

ated at far greater distances from the earth. About 5000 nebulae

have been observed, and their places are assigned in catalogues.

The following are among the most remarkable of this class of

objects.

580. The great nebula in Andromeda. This is a very conspicu-
ous nebula, distinctly visible without a telescope, and is often mis-

taken for a comet. It was discovered nearly 1000 years ago,

though not much noticed until attention was directed to its sin-

gular appearance by Simon Marius in 1612. It is of an oval

shape, and has been described as resembling the light of a candle

shining through horn. When observed with the best telescopes,

its boundaries appear greatly extended, its extreme length being
90 minutes, and its breadth 15 minutes. The great telescope at

Cambridge Observatory exhibits two dark bands or canals nearly

straight and parallel, about one degree in length, running in the

direction of the longer axis of the nebula. Till very recently,

this nebula defied all the optical power that could be brought to

bear upon it to resolve it into stars, or even to afford any symp-
toms of its stellar character. But within the last few years, de-

cisive evidence of its consisting of stars has been obtained with

the Cambridge telescope. Plate VII., Fig. 1, gives a representa-
tion of the appearance of this nebula in Herschel's telescope.

581. The great nebula in the sword-handle of Orion. This nebula

was first discovered and figured by Huygens in 1659. It consists

of irregular nebulous patches, extending over a surface about 40

minutes square, its superficial magnitude being more than twice

that of the moon's disc. The brightest portion of the nebula re-
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sembles the head and jaws of some monstrous animal with an
enormous proboscis. The nebulosity in this vicinity is flocculent,
and of a greenish-white tinge. It was irresolvable until the com-

pletion of Lord Eosse's telescope ;
but in this instrument there

are strong indications of its being composed of a vast multitude

of stars, far removed from us in the profundity of space. A com-

parison of the earlier with the more recent representations of this

nebula might lead to the conclusion that it had changed its form
within two hundred years, but no such conclusion can be safely
drawn on account of the imperfection of the telescopes with which

the early observations were made. Plate VII., Fig. 3, gives a rep-
resentation of the appearance of this nebula.

582. The spiral nebula. This nebula is situated near the ex-

tremity of the tail of the Great Bear. It is a double nebula, with

two centres about five minutes apart. From one of the centres

proceed several luminous streams, which wind spirally round the

nucleus, suggesting the idea of a body not in a state ofpermanent

equilibrium. Though not clearly resolved into stars with Lord

Eosse's telescope, some evidence is thereby afforded that it is so

composed. Other nebulse have similar spiral coils, but less dis-

tinctly marked than in the one above. Plate VIII., Fig. 4, gives

a representation of this nebula.

583. The dumb-bell nebula. This nebula is situated between the

constellations Swan and Eagle. In a small telescope it exhibits

two centres, connected by a nebulous band, its entire diameter be-

ing 7 or 8 minutes. Sir John Herschel compared its appearance

to that of a dumb-bell. In Lord Eosse's telescope the form ap-

pears less regular, but its general outline is elliptical.
Plate VEIL,

Fig. 1, gives a representation of this nebula.

584. The crab nebula. Tins nebula is situated near the star

in the southern horn of Taurus. In an ordinary telescope it ap-

pears of an oval form, but in Lord Eosse's telescope it is seen as

a densely-crowded cluster, with branches streaming off from the

oval boundary like claws, so as to give it an appearance that in a

measure justifies the name of the crab nebula by which it is often

distinguished. Plate VIIL, Fig. 2, gives a representation of this

nebula.
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585. The annular nebula in Lyra. This nebula is situated in

the constellation Lyra, between the stars /3 and
-y.

In Sir J. Her-

schel's telescope it appeared like a ring of light of a somewhat

oval form. The centre was not entirely black, but filled with a

faint nebulous light. In Lord Rosse's telescope are seen fringes

extending from each side of the annulus, and also stripes crossing

the central portion. Though apparently a small nebula, its actual

dimensions must be enormous. Even supposing it no farther

from us than 61 Cygni, the diameter of the ring would be 20,000
millions of miles, and it is not improbable that its real distance is

incomparably greater than that of the above star. Plate VIII.,

Fig. 3, gives a representation of this nebula.

586. Planetary nebula?. Planetary nebula) exhibit discs of uni-

form brightness throughout, often very sharply defined at the bor-

ders, or only a little curdled or furred, as the edges of a planet

frequently appear when the night is unfavorable for telescopic

observation. They are called planetary nebulae from the great

resemblance they offer to the discs of planets. Not far from the

star j3
in Ursa Major is a fine nebula of this kind. It is circular,

nearly 3 minutes in diameter, and of equable light on its whole

surface, and, after a long inspection, looks like a condensed muss

of attenuated light, seemingly of the size of Jupiter. Supposing
it placed at a distance from us not more than that of 61 Cygni,
it would have a linear diameter seven times greater than that of

the orbit of Neptune. About twenty planetary nebulae have been

observed. They can not be globular clusters of stars, otherwise

they would be brighter in the middle than at the borders. It

has been conjectured that they may be hollow spherical shells, or

circular flat discs, whose planes are nearly at right angles to our

line of vision.

587. Nebulous stars. Nebulous stars are stars surrounded by a

faint nebulosity, usually of a circular form, and sometimes several

minutes in diameter. In some cases the nebulosity is sharply de-

fined at the borders, in others it gradually fades away to dark-

ness. The stars thus attended have nothing in their appearance
to distinguish them from ordinary stars, nor does the nebulosity

in which they are situated offer the slightest indications of resolv-

ability into stars with any telescopes hitherto constructed. As
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instances of nebulous stars may be mentioned one of the fifth mag-
nitude, numbered 55 in Andromeda; and another of the same

brightness, numbered 8 in Canes Venatici.

588. Distribution of the nebulae. The nebulie are not distributed

uniformly over all parts of the heavens. From certain regions

they are wholly absent
;
in others they are rarely found

;
while

in other regions they are crowded in amazing profusion. They
are most numerous in the constellations Leo, Virgo, and Ursa

Major.

589. Observations with the spectroscope. The spectroscope has

furnished important information respecting the condition of the

fixed stars and the nebula3. About one third of all the stars

which have been examined exhibit spectra exactly like that of

our sun, showing dark lines occupying the same position as in the

solar spectrum, proving that they are composed of the same ele-

ments as our sun, and are in the same physical condition. About

one half of all the stars exhibit the colors of the solar spectrum
crossed by four very heavy black lines produced by the presence

of hydrogen, while some of the brighter stars exhibit a few other

dark lines. Nearly one sixth of all the stars exhibit a spectrum

showing not only dark lines, but a number of bright bands sep-

arated by dark bands
;
while a few have been found whose spec-

tra exhibit not only dark lines, but also bright lines which are very

brilliant, like those belonging to the spectrum of a gaseous body.

These bright lines indicate the presence of incandescent gas.

About one third of the nebulas which have been examined ex-

hibit spectra consisting merely of a few isolated bright lines which

in several cases correspond to well-known gases. Hence it is in-

ferred that these bodies do not consist, like our sun, of a white-hot

nucleus enveloped in an atmosphere which absorbs a portion of

the rays, but that they are in the condition of a luminous gas.

About two thirds of all the nebula) exhibit a spectrum which is

apparently continuous. It is inferred that the latter consist of an

assemblage of stars that is, are clusters of stars
;
while the former

are masses of glowing gas that is,
are not capable of being re-

solved into stars.

These facts are regarded as proving the existence of true nebu-

las
;
that is, of vast masses in the gaseous condition.
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^590. Have any nebula; changed theirforms? The forms of many
of the nebulas are so peculiar that it is difficult to regard them as

having attained a condition of permanent equilibrium, and it has

been supposed that we see them now in the state of transition to-

ward stable forms. A comparison of the present appearance of

many nebulas with the representations of them furnished by for-

mer astronomers would lead to the conclusion that they had sen-

sibly changed their form within 100 years. Such a conclusion

may be premature, but it is probable that future astronomers will

discover changes that are incontestable. If any of the nebulas

consist wholly of vaporous matter, they are probably in a state

of gradual condensation
;
and if they all consist of clusters of stars,

then these stars are doubtless in motion, forming astral systems
of wonderful complexity.

591. Variations in the brightness of nebula*. Some of the nebulaa

have exhibited decided changes of brightness. A nebula, situ'

ated near E in Taurus, at the date of its discovery in 1852 was

easily seen with a good telescope, whereas in 1862 it was invisi-

ble with instruments of far greater power. A small star close to

this nebula likewise faded within the same lapse of time. Anoth-

er nebula, situated near the Pleiades, in 1859 could be seen with

a three-inch telescope, whereas in 1862 it could only be seen with

difficulty through the largest telescope. Five or six cases of this

kind have been noticed. It is not improbable that tbese varia-

tions of brightness are due to the same cause as the changes of

the variable stars.

592. The Via Lactea, or Milky Way. The Galaxy, or Milky

Way, is that whitish luminous band of irregular form which is

seen on a clear night stretching across the expanse of heaven from

one side of the horizon to the other. To the naked eye it pre-

sents merely a diffused milky light, stronger in some parts than

in others
;
but when examined in a powerful telescope, it is found

to consist of myriads of stars so small that no one of them singly

produces a sensible impression on the unassisted eye.

The general course of the Milky "Way is in a great circle, in-

clined about 63 to the celestial equator, and intersecting it near

the constellations Orion and Ophiuchus.
The distribution of the telescopic stars within its limits is far

from uniform. In some regions several thousands are crowded
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together within the space of one square degree ;
in others only a

few glittering pointst are scattered upon the black ground of the

heavens. In some parts it presents to the naked eye a bright

glow of light from the closeness 'of the constituent stars
;
in oth-

ers there are dark spaces containing scarcely a single star. Such

vacancies occur in the constellations Scorpio and Ophiuchus.

593. Law ofdistribution of the stars. In order to decide whether

the stars are distributed over the surface of the heavens accord-

ing to any general law, Sir W. Herschel undertook a rigorous tel-

escopic survey of the heavens, counting the number of. the stars

visible in the field of his telescope when directed to different parts

of space. He thus discovered that around the poles of the Milky

Way the stars are more thinly scattered than elsewhere
;
that as

we advance toward the Milky Way the number of stars included

in the field of view of the telescope increases, at first slowly, but

afterward more rapidly ;
and that along the Milky Way the stars

are crowded so closely together that it becomes in many cases im-

possible to count them.

594. Hypothesis of Sir William Herschel In 1784, Sir W. Her-

schel advanced the following hypothesis respecting the Milky

Way : The stars of our firmament, instead of being scattered in

all directions promiscuously through space, constitute a cluster

with definite limits, in the form of a stratum, of which the thick-

ness is small in comparison with its length and breadth, and in

which the earth occupies a position somewhere about the middle

of its thickness. For if we suppose the stars to be scattered pret-

ty uniformly through space, the number of stars visible in the

field of a telescope ought to be about the same in every direction,

provided the stars extend in all directions to an equal distance.

But if the stars about us compose a stratum^ whose thickness is

small in comparison with its length and breadth, then the num-

ber of stars visible in the different directions will lead us to a

knowledge both of the exterior form of this stratum, and of the

place occupied by the observer. For example, if within a certain

circle of the heavens we count ten stars, and in a circle of the

same diameter, taken in a different direction, we count eighty stars

with the same telescope, the lengths of the two visual rays will be

in the ratio of 1 to 2, or the cube roots of 1 and 8.
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595. This hypothesis is untenable. This hypothesis assumes, 1st,

that the stars are uniformly distributed through space ; and, 2d,

that Herschel was able with his telescope to penetrate to the lim-

its of our stratum.

At a later period of his life,IIerschel abandoned each of these

hypotheses. Every increase in the power of his telescopes dis-

closed new stars which before had been invisible, and he was

compelled to admit that with his telescope of 40 feet the Milkv

Way was entirely fathomless ; and instead of the stars being dis-

tributed uniformly through space, he admitted that there is a

great and sudden condensation of stars in the neighborhood of the

Milky Way.
In every part of the heavens the stars seem to extend to a dis-

tance beyond the reach of the most powerful telescope hitherto

constructed, and hence the shape of that portion of space which

the stars occupy must be entirely unknown to us
;
that is, the

material universe appears to us to be boundless.

596. Madler s hypotfiesis respecting the Milky Way. Madler sup-

poses that the stars of the Milky Way are grouped together in

the form of an immense ring, or perhaps a system of detached but

concentric star-rings of unequal thickness and various dimensions,

but all situated nearly in the same plane. To an observer situated

in the centre of such a system of rings,the inner ring would seem to

cover the exterior ones
;
that is, the stars would seem to form but

a single ring, and this ring would be a great circle of the sphere.
The Milky Way, in fact, divides our firmament into two portions,

whose areas are to each other in the ratio of about 8 to 9, from

which it is concluded that the solar system is not situated exactly
in the plane of the Milky Way, but somewhat toward the south,

or in the direction of the constellation Virgo.
The division of

tjie Milky Way throughout a considerable por-

tion of its extent into two separate branches indicates that in this

part of the firmament the star-rings do not cover each other, which

Madler explains by supposing that we are eccentrically situated,

being nearer to the southern than to the northern part of the

rings. This supposition would also explain the greater brilliancy

of the Milky Way in the neighborhood of the south pole.

597. Original condition of the universe. The question naturally
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arises, Was the universe created substantially as we now see it,

or has it been brought to its present condition by a succession of

gradual changes under the operation of general laws ? We find

in our solar system several remarkable coincidences which we can
not well suppose to be fortuitous, and which naturally suggest the

idea of some grand and comprehensive law.

1st. All the planets (now 90 in number) revolve about the sun
from west to east, and, with slight exceptions, nearly in the same

plane, viz., the plane of the sun's equator. There are only 4 plan-
ets (and these are minute asteroids) whose orbits are inclined to

the ecliptic as much as 20.

2d. The sun rotates on an axis in the same direction as that in

iffhich the planets revolve around him.

3d. All the major planets (except perhaps Uranus and Nep-
tune) rotate on their axes in the same direction as that in which

they move around the sun.

4th. The satellites (as far as known) revolve around their pri-

maries in the same direction in which the latter turn on their

axes.

5th. The orbits of all the larger planets and their satellites have

small eccentricity. Only seven of the asteroids have an eccen-

tricity as great as one quarter.

6th. The planets, upon the whole, increase in density as they
are found nearer the sun.

7th. The orbits of the comets have usually great eccentricity,

and have every variety of inclination to the ecliptic.

These coincidences are not a consequence of the law of univer-

sal gravitation, yet it is highly improbable that they should be the

result of chance. They seem rather to indicate the operation of

some uniform law. Can we discover any law from which these

coincidences would necessarily result?

598. Conclusion* from geological phenomena. An examination

of the condition and structure of the earth has led geologists to

conclude that our entire globe was once liquid from heat, and that

it has gradually cooled upon its surface, while a large portion of

the interior still retains much of its primitive heat The shape
of the mountains in the moon seems to indicate that that body
has at some former time been in a state of fusion. But if the

earth and moon were ever subjected to such a heat, it is proba-
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ble tliat the other members of the solar system were in a like

condition, perhaps at a temperature sufficient to volatilize every
solid and liquid body, constituting perhaps a single nebulous mass

of the smallest density.

599. The nebular hypothesis stated. Let us suppose, then, that

ihe matter composing the entire solar system once existed in the

condition of a single nebulous mass, extending beyond the orbit

of the most remote planet. Suppose that this nebula has a slow

rotation upon an axis, and that by radiation it gradually cools,

thereby contracting in its dimensions. As it contracts in its di-

mensions, its velocity of rotation, according to the principles of

Mechanics, must necessarily increase, and the centrifugal force

thus generated in the exterior portion of the nebula would at

length become equal to the attraction of the central mass.

This exterior portion would thus become detached, and revolve

independently as an immense zone or ring. As the central mass

continued to cool and contract in its dimensions, other zones

would in the same manner become detached, while the central

mass continually decreases in size and increases in density.

The zones thus successively detached would generally break

up into separate masses revolving independently about the sun
;

and if their velocities were slightly unequal, the matter of each

zone would ultimately collect in a single planetary, but still gase-

ous mass, having a spheroidal form, and also a motion of rotation

about an axis.

As each of these planetary masses became still farther cooled,

it would pass through a succession of changes similar to those of

the first solar nebula
; rings of matter would be formed surround-

ing the planetary nucleus, and these rings, if they broke up into

separate masses, would ultimately form satellites, revolving about

their primaries.

600. Phenomena explained ly this hypothesis. The planet Saturn

affords the only instance in the solar system in which these rings

have preserved their unbroken form
;
and the group of asteroids

between Mars and Jupiter presents a case in which a ring broke

up into a large number of small fragments, which continued to

revolve in independent orbits about the sun.

The first six of the phenomena mentioned in Art. 597 are ot>
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vious consequences of this theory. The eccentricity of some of
the orbits, and their inclination to the sun's equator, must be as-

cribed to the accumulated effect of the disturbing action of the

planets upon each other.

601. Apparent anomalies explained. The planets thus formed
would all have a motion of rotation, but they would not all nec-

essarily rotate in the same direction as the motion of revolution.

The outer planets might rotate in the contrary direction, but the

satellites must in all cases revolve in their orbits in the same di-

rection as the rotation of the primary. The satellites of Uranus
and Neptune have a retrograde motion

;
and if it shall be discov-

ered that these planets rotate upon their axes in the same direc-

tion, these movements would all be consistent with the nebular

hypothesis.
Comets may consist of nebulous matter encountered by the

solar system in its motion through space, and thus brought within

the attractive influence of the sun. They are thus compelled to

move in orbits around the sun, and these orbits may become so

modified by the attraction of the planets that they may some-

times become permanent members of our solar system. Some
of the comets may perhaps consist of small portions of nebulous

matter which became detached in the breaking up of the planet-

ary rings, and continued to revolve independently about the sun.

602. How this hypothesis may be tested. It has been attempted
to subject this hypothesis to a rigorous test in the following man-

ner. The time of revolution of each of the planets ought to be

equal to the time of rotation of the solar mass at the period when

its surface extended to the given planet. It remains, then, to

compute what should be the time of rotation of the solar mass

when its surface extended to each of the planets. It has been

found that if we suppose the sun's mass to be expanded until its

surface extends to each of the planets in succession, its time of

rotation at each of these instants would be very nearly equal to

the actual time of revolution of the corresponding planet ;
and

the time of rotation of each primary planet corresponds in like

manner with the time of revolution of its different satellites.

The nebular hypothesis must therefore be regarded as possess-

ing considerable probability,
since it accounts for a large number

of circumstances which hitherto had remained unexplained.
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Miscellaneous Problems.

1. At what hour does the sun rise at Havana, Lat. 23 9', at

the time of the winter solstice ?

2. What is the greatest, and also the least meridian altitude of

the sun at Chicago, Lat. 41 52' ?

3. What is the least latitude in which twilight lasts all night
at the time of the summer solstice ?

4. In what azimuth does the sun rise at Boston, Lat. 42 21', on

the 10th of May, when his declination is 17 45' N. ?

5. At what hour of the day is the sun due east at New York,
Lat. 40 42', on the 10th of August, when his declination is 15

26' N.?

6. Find the duration of twilight at Cincinnati, Lat. 39 6', on

the 21st of January, when the sun's declination is 20 S.

7. Find the latitude of the place where the sun's centre remains

above the horizon for a hundred successive days.

8. At Washington, Lat. 38 54', on the 1st of May, when the

sun's declination is 15 14' N., the length of the shadow cast by
a tower at noon on a horizontal plane is m feet; determine the

height of the tower.

9. At New Haven, Lat 41 18', on the 20th of May, when the

sun's declination is 20 6' N., at what hour of the day will a man's

shadow be double his height?
10. Find the altitude of the sun at Philadelphia, Lat. 39 57',

on the day of the equinox at 9 o'clock in the morning.
11. Find the time of sunrise on the longest day at a place in

Lat 45.

12. Determine the latitude of the place in which the longest

day contains 16 hours.

13. Find the sun's altitude at 6 o'clock in terms of the latitude

of the place, and declination of the sun.

14. Find the sun's altitude when on the prime vertical in terms

of the latitude and declination.

15. The sun's altitude at 6 o'clock was 14, and its altitude

when due east was 23
; required the latitude of the place.

16. Determine the declination of the sun that it may set in the

S.W. point at a place whose latitude is 65 N.

17. Determine the latitude of the place where the sun rises in
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the KE. point, and also the time of its rising, the sun's declina-

tion being 20 N.

18. The sun's meridian altitude is 66, and his depression below
the horizon at midnight is 30; required the sun's declination

and the latitude of the place.

19. The longitude of Sirius on the 1st of January, 1864, was
101 1' 10"

;
what was its longitude at the commencement of the

Christian era, allowing 50".24 for mean amount of precession ?

20. In the year 1880 there were five Sundays in the month of

February; when will a similar case happen again?
21. How much faster than at present must the earth rotate upon

its axis in order that bodies on its surface at the equator may lose

half their weight?
22. How much faster than at present must the earth rotate upon

its axis in order that bodies on its surface, in Lat. 60, may lose

all their gravity?
23. Determine the latitude of the place where the longest day

is 6 hours and 12 minutes longer than the shortest day.
24. Determine the latitude of the place at which the sun sets at

10 o'clock on the longest day, and also find the latitude of the

place where it sets at 3 o'clock on the shortest day.
25. Aldebaran (Dec. 16 14' N.) was observed when on thb

prime vertical both east and west, and the intervening time was

9h.20m.
; required the latitude of the place.

26. Determine the latitude of the place at which the sun rises in

the N.N.E. point at the summer solstice.

27. At a place in Lat 38, when the sun's declination was 20

N., the sun was observed to rise at a point E. by N. according to

a surveyor's compass ; required the variation of the needle.

28. The horizontal refraction being 34' 54", find how much the

rising of the sun is accelerated by it at New Haven at the time

of the summer solstice.

29. Prove that the sun's rising is least accelerated by refraction

at the time of the equinoxes.

30. Supposing the quantity of matter in the sun to be increased

nine times, and the orbits of the planets to continue the same, how

would the periodic times be altered ?

31. If the mass of a planet be 4 times that of the earth, and the

distance of its satellite 16 times that of the moon from the earth,

in what time will the satellite make one revolution?
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32. If the periodic time of Mercury be to that of the earth as 4

to 17, determine the time of one synodic revolution.

33. What must be the relation of the distances from the sun of

a superior and an inferior planet that their synodic revolutions

may be equal ?

34. Determine when Saturn will appear stationary, assuming
his distance from the sun to be to that of the earth from the sun

as 19 to 2, and the orbits to be circles.

35. How high must a man be elevated above the surface of the

earth at New York, Lat. 40 42', to see the sun at midnight at the

time of the summer solstice ?

36. A place in Lat. 42 has its horizon so surrounded with,

mountains that the sun is not visible until it is 10 above the ra-

tional horizon in the morning, and it again disappears when 10

above the rational horizon in the evening; how much is the lon-

gest day shortened by this circumstance ?

37. At a place in Lat. 35 K, Aldebaran (R. A. 67 2', Dec. 16

14' N.) was seen in the same vertical plane with Sirius (R. A. 99

47', Dec. 16 32' S.) ; required the azimuth.

38. At a place in Lat. 35 K, find the hour at which Aldebaran

and Sirius will be in the same azimuth on the 1st of January,
when the sun's R. A. is 18h. 45m.

39. Aldebaran and Sirius were found to set at the same instant
;

required the latitude of the place of observation.

40. Find the azimuth of a star when its change of altitude in a

given time is a maximum.
41. Find at what time on the longest day of the year, the vari-

ation of the sun's altitude at New Haven is the most rapid.

42. Given the sun's apparent diameter, and the latitude of the

place, it is required to determine his declination when the time of

rising of the sun's disc is a minimum.

43. Find the time when the apparent diurnal motion of a Ursas

Majoris (Dec. 62 29') is perpendicular to the horizon at New
Haven.

44. Compare the times during which a Ursa? Majoris moves

eastward and westward at New Haven.

45. Find the sun's longitude, or the day of the year, when Sirius

rises with the sun at a place in Lat. 42.

46. Find the day of the year when Sirius sets with the sun at a

place in Lat. 42.
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47. When the sun's declination was 15 N, his altitude was
found to be 20, and after one hour's interval his altitude was
found to be 31

; required the latitude of the place of observation.

48. If the length of the day be to that of the night as 3 to 2,

and the altitude of the sun at noon double his depression at mid-

night, determine the latitude of the place, and the sun's declina-

tion.

49. Determine at what place and at what time of the year, day
breaks at 2 o'clock, and the sun rises at half past four.

50. Find the sun's declination when the twilight is shortest at

New York.

51. If the moon has a small satellite whose periodic time is five

days, what must be the major axis of its orbit?

52. It is required to find the sidereal period of Mercury, the

position of the ascending node, and the distance of Mercury from

the sun, from the following data :

Green'h Time.
183&



THE following Alphabet is given in order to facilitate, to the student who is un-

acquainted with it. the reading of those parts in which the Greek letters are used :

Letter*.
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No.
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No.
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No.
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No.
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Elements of the Moon.

Mean distance from the earth 288900 miles.

Mean sidereal revolution z'jd. 7h. 43m. 1 1 .46s.

Mean synodical revolution 2gd. I2h. 44m. 2.873.
Mean revolution of nodes i8yrs. 2i8d. 2ih. 22in. 46s.
Mean revolution of perigee 8yrs. 3iod. i3h. 48m. 53s.

Mean inclination of orbit 5 8' 48".

Eccentricity of the orbit o. 064908.
Diameter of the Moon 2 160 miles.

Density of the Moon, that of the earth being i . .0.5667.
Mass of the Moon, that of the earth being i . . . . fa.

Elements of the Satellites of Jupiter.

Sidereal

Revolution.

Distance
in Radii of

Jupiter.

Distance
in Miles.

Orbit inclined
to Jupiter's

KqiiHtor.

Diameter.

Apparent. In Miles

MM, tip*
of Jupiter
being 1.

d. h. m. a.

I 18 27 33

3 i 3 i4 36

7 3 42 33
16 16 3i o

6.o4g
9.623
i5.35o

26.998

278642
442904
706714
I20OOOO

O07
o i 6

o 5 3

o o 24

2436

2187
35 7 3

3o5 7

.0000173

.0000232

.0000885

.0000427

Elements of the Satellites ofSaturn.

Date of

Discov-

ery.

Sidereal

Revolution.
in Radii of Eccentricity

of Orbit

1789
1787
1 684
1 684

1672
1666
1 848

1671

il. h. m. s.

22 37 5

1 8 53 7
1 21 l8 26

2 17 4i 9
4 12 26 it

16 22 4i 26
22 12

79 7 53 4o

3.i4i
4.o32

4-99 3

6.399
8.932

20.706
27.786
64.35g

26.8

34-4
42.6
54.5

76.2
176.6
222.1

5i4.5

118000
162000
188000

240000
336ooo

778000
940000
2268000

0.0089

0.006 i

.02

.0227

.0292

.116

.025

5oo
5oo
1200
2850

1800

Elements ofthe Satellites of Uranus.

Date of

Discovery.

Sidereal

Revolution.
I Distance in Mean uppartnt Meau Distance
Ttadii of I'ranus. Distance. in Miles.

1 847
1847
1787
1787

d. h. m.

2 12 17
4 3 28
8 16 56

i3 ii 7

6. 94

9.72
16.89
21.27

i3.5
i 9 .3

33. 9
45.2

119994
170863
288600
38oooo

Elements of the Satellite of Neptune.

Sidereal revolution 5d. 2oh. 5om. 45s.

Apparent mean distance 1 6" . 98.
Mean distance in miles 236ooo.

Orbit inclined to the plane of the ecliptic 1 5 1 .
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TABLE IV. ECLIPSES OF THE SUN FROM 1865 TO 1900.

The following is a list of all the solar eclipses visible in the city of Boston from
1865 to the close of the present century. The dates are given in mean time for the

meridian of Boston, reckoned astronomically.

1. 1865, October I8tk and 19 'h.

Beginning .......................................... 18th, 21h. 9m. 55s.
Greatest obscuration............................. 22 44 58

Apparent conjunction ........................... 22 46 4
End .................................................. 19th, 25 7

Magnitude of the eclipse (sun's diameter 1) 0.692, on sun's sonth limb.

This eclipse was annular in the States of North and South Carolina
;
at Charles-

ton the ring lasted 6f minutes.

This was the third return of the eclipse of September, 1811, which was antrimr in

Virginia.

2. 1866, October 7th and Sth.

Beginning ........................................... 7th, 23h. lira. 33s.

Apparent conjunction............................. 23 33 50
Greatest obscuration............................... 23 41 25
End ................................................... 8th, 10 34

Magnitude of the eclipse 0.043, on sun's north limb.

South of Connecticut there was no eclipse, and no central eclipse in any part of

the earth.

3. 1869, August 7th.

Beginning ................................................... 5h. 21m. 17s.

Apparent conjunction .................................... 6 16 7

Greatest obscuration ..................................... 6 16 40

End ........................................................... 7 7 28

Magnitude of the eclipse 0.853, on sun's south limb.

This eclipse was total in Iowa, Illinois, Kentucky, and North Carolina.

4. 1873, May 25th.

The sun and moon will bo in contact at sunrise, but the sun will be eclipsed to

places at a greater distance from the equator, and in less longitude from Greenwich.

5. 1875, September 28th.

Sun rises eclipsed ........................................ 17h. 56m. Os.

Formation of the ring................................... 18 20 21

Apparent conjunction ................................... 18

Nearest approach of centres ........................... 18 21 37

Rupture of the ring...................................... 18 22 52

End of the eclipse........................................
19 30 43

Magnitude of the eclipse at sunrise, 0.603 ;
at nearest approach, 0.951.

This eclipse will be annular in Boston, and in some part of Maine, New Ham]>

shire, Massachusetts, and Vermont.

C 1876, March 25th.

Beginning ........ . .......................................... *h. llm. 29s.

Greatest obscuration ...................................... > *

>

Apparent conjunction
End 48

Magnitude of the eclipse 0.276, on sun's north limb.
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7. 1878, July 29th.

Beginning 4h. 56m. 10s.

Greatest obscuration 5 50 1

Apparent conjunction 5 53 57
End 6 39 8

Magnitude of the eclipse 0.615, on sun's south limb.

This eclipse will be total at Denver, Colorado, and the line of central eclipse runs

from northwest to southeast across the western portion of the United States.

This is the fourth return of the total eclipse of June IGth. 1806.

J. 1880, December 30th.

Sun rises eclipsed 19h. 30m. Os.

Greatest obscuration 20 12 50

Apparent conjunction 20 12 59
End 21 11 37

Magnitude of the eclipse at sunrise, 0230; at greatest obscuration, 0.457, on
sun's north limb. This eclipse can not be central in any place.

At the time of this eclipse the sun and moon are very nearly at their least possi*
ble distance from the earth.

9. 1885, March 16th.

Beginning Oh. 35m. Os.

Greatest obscuration 1 55 55

Apparent conjunction 1 57 22
End 3 10 49

Magnitude of the eclipse 0.537, on sun's north limb.

10. 1886, Avgust 28th.

Beginning.. 18h. 30m. 22s.

Apparent conjunction 18 33 15
Greatest obscuration 18 40 1

End 18 5L 52

Magnitude of the eclipse 0.018, on sun's south limb.

North of Massachusetts there will be no eclipse.

11. 1892, October 20th.

Beginning Oh. 18m. 39s.

Apparent conjunction 1 45 11

Greatest obscuration 1 51 8
End 3 20 8

Magnitude of the eclipse O.G82, on sun's north limb.

The sun will probably be centrally eclipsed in the Canadas and Labrador.

12. 1897, July 28th.

Beginning 21h. 7m. 35s.

Greatest obscuration 22 15 35

Apparent conjunction 22 24 56
End 23 23 59

Magnitude of the eclipse 0.369, on sun's south limb.

13. 1900, May 27th.

Beginning 20h. 8m. 41s. >

Apparent conjunction 21 22 50
Greatest obscuration 21 23 6
End 22 45 32

_ Magnitude of the eclipse 0.918, on sun's south limb.

The sun will be totally eclipsed in the State of Virginia.
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Moon. . . .



330 TABLE VII. ASTRONOMICAL REFRACTIONS.

App.
Alti-

tude.



TABLES VII., VIII., AND IX. 331

TABLE VII. ASTRONOMICAL REFRACTIONS.

Barom.



332 TABLES X., XI., AND XII.

TABLE X. ALTITUDES OF THE PRINCIPAL LUNAR MOUNTAINS.

Name.



TABLES XIII., XIV., AND XV. 333

TABLE xiii. SCHWABE'S OBSERVATIONS OF THE SOLAR SPOTS.

Year.



334: TABLE XVI.

TABLE XVI. VARIABLE STARS.

No.



EXPLANATION OF THE TABLES.

Table I., page 321, contains the principal elements of the plan-

etary system, with the exception of the minor planets. These
elements have been taken from Le Verrier's Annales de 1'Observa-

toire, tome second, p. 58-61, as far as they are there given ;
other

numbers depending upon these have been derived from them by
computation ;

and the remainder of the Table has been derived

from various sources, but chiefly from Hind.

Table II., pages 322 and 323, contains the elements of the minor

planets. These elements have been derived from the Berlin As-

tronomisches Jahrbuch for 1866, with the exception of the last

three, which were derived from recent periodicals.

Table III., page 324, contains the elements of the satellites of

the primary planets. These elements were derived from a com-

parison of various authorities, such as Herschel's Astronomy,
Chambers's Hand-book of Astronomy, Hind's Solar System, and

Chazallon's Annuaire des Marees pour 1860.

Table IV., pages 325 and 326, contains a catalogue of all the

eclipses of the sun that will be visible in the city of Boston from

1865 to 1900. It is copied from the American Almanac for

1831, and was computed by Mr. R. T. Paine.

Table V., page 327, contains a catalogue of eclipses designed to

illustrate several important principles. It shows, first, that seven

eclipses may occur in one year ; and, second, it illustrates the prin-

ciple of the Saros. The data for the past eclipses were derived

from the English Nautical Almanac
;
and those for future eclipses

were derived chiefly from Chambers's Hand-book of Astron-

omy.
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Table VI., page 327, contains a complete catalogue of the tran-

sits of Mercury over the sun's disc from 1631 (the first transit ob-

served) to the close of the present century. It is derived from

Delarnbre's Astronomic, t
ii., p. 518.

Table VlL, pages 328 and 329, contains Bessel's Astronomical

Refractions in an abridged form. It requires, in addition to the

observed apparent altitude, an observation of the height of the

barometer, upon which depends the factor B
;
of the thermometer

attached to the barometer, upon which depends the factor t ; and

of the temperature of the external air, upon which depends the

factor T.

Take the mean refraction corresponding to the observed alti-

tude
;
take the factor B corresponding to the height of the ba-

rometer
;
also the factor t corresponding to the attached thermom-

eter; and the factor T corresponding to the external thermom-

eter. Multiply these four numbers together, and the product will

be the true refraction.

Example. The observed apparent altitude of a star was 34 11'

15"
;
the barometer, 28.856 inches

;
the external and the attached

thermometers both stood at + 19. 6 Fahr. It is required to com-

pute the refraction.

Mean refraction for 34 11' 15" 1' 24".8.

Barometer, 28.856. Factor B, 0.975.

i no (
Factor t. 1.001.

Thermometer
'
19 '6

I Factor T, 1.061.

Product, 0.975x1.001x1.061 =1.0355.

True refraction^ 84".8 x 1.0355= 1' 27 //
.8.

For small altitudes, when great accuracy is required, the com-

putation is most conveniently performed by logarithms. A Ta-

ble, which furnishes the logarithms of all these factors, is given
in my Practical Astronomy, pages 364-5.

Table VIII., page 329, shows the quantity by which the moon's

equatorial horizontal parallax must be diminished, to obtain the

horizontal parallax belonging to any other latitude. This reduc-

tion is given for three values of the moon's equatorial parallax,

viz., 53', 57', and 61'
;
and for any other value, the equatorial par-

allax may be easily found by interpolation.



EXPLANATION OF THE TABLES. 337

Table IX., page 329, contains the elements of the seven comets
Whose periods have been well established. These elements have
been derived chiefly from the Astronomische Nachrichten.

Table X., page 330, exhibits the altitude in English feet of the

principal lunar mountains according to the observations of Beer
pnd Madler.

Table XL, page 330, exhibits the breadths in English miles of
some of the larger craters, or annular mountains on the moon's

surface, according to the observations of Beer and Madler.

Table XII., page 330, contains a catalogue of all the transits

,
of Yenus over the sun's disc from 1639 (the first ever observed)
to the end of the 21st century. It is derived from Delambre's

Astronomic, t
ii., p. 473.

Table XIII., page 331, exhibits the results of 39 years of ob-

servations of the solar spots by M. Schwabe, of Dessau, in Ger-

many. Column 2 shows the number of days in each year upon
which observations were made

;
column 3 shows the number of

groups of spots observed
;
and column 4 shows the number of

days on each year upon which the sun was free from spots. These

observations decidedly indicate a periodicity in the number of the

solar spots, a maximum recurring at an interval of from 9 to 12

years.

Table XIV., page 331, exhibits the results of the best observa-

tions hitherto made for determining the parallax of some of the

fixed stars. Several of the results here given are the averages of

the determinations by two or more astronomers. The results for

the two stars first mentioned are entitled to considerable confi-

dence
;

all the others are to be regarded as quite doubtful, except
as indicating that the parallax can not much exceed the quantities

here given.

Table XV., page 331, furnishes the elements of those binary

stars whose periods are less than two centuries.





EXPLANATION OF THE PLATES.

Plate I. is a chart of the world with cotidal lines marked upon
it. The numerals upon the cotidal lines denote the hour, in

Greenwich time, of high water on the day of new moon or full

moon. The map is mainly copied from Professor Airy's chart in

the Encyclopasdia Metropolitana, Article Tides, with modifications

suggested by the observations of the United States Coast Survey,
and other recent observations in the Pacific Ocean.

Plate II., Fig. 2, is a representation of the appearance of the

full moon, copied from the engraving of Beer and Madler, modi-

fied according to a photographic picture taken at the Cambridge

(Massachusetts) Observatory.

Fig. 1 is a representation of a small portion of the moon's sur-

face as seen with a powerful telescope near the time of first quar-

ter. This figure is derived from MitchePs Sidereal Messenger,

vol.
i., p. 32.

Plate III., Fig. 1, is a representation of the total solar eclipse of

July 18th, 1860, as observed in the northern part of Spain. The

figure is copied from a photograph taken by De la Eue one

minute after total obscuration. Fig. 2 is copied from a photo-

graph taken immediately previous to the reappearance of the sun.

In Fig. 1 the luminous protuberances are almost entirely on the

left-hand side of the sun's disc, while the right side is almost en-

tirely free from them. In Fig. 2 protuberances had come into

view on the right-hand side, while those on the left hand have

mostly disappeared, showing conclusively that these protuber-

ances are attached to the disc of the sun, and not to that of the

moon.

Plate IV. contains representations of the planets Venus, Mars,

Jupiter, and Saturn. The figure of Venus is copied from a draw-



340 ASTRONOMY.

ing by Sehroter, representing the planet near its inferior conjunc-

tion. The figure of Mars is copied from a drawing by Secchi,

published with the Observations of the Eoraan Observatory for

1856. The figure of Jupiter is copied from a drawing in the Si-

dereal Messenger, vol. i., p. 72 ;
and the figure of Saturn is copied

from a drawing by Dawes in the Astronomische Nachrichten, vol.

xxxv., p. 395. (See Frontispiece.)

Plate V. contains representations of several comets. Fig. 1 is

Encke's comet, from a drawing by Struve in 1828 ; Fig. 2 is a

representation of the head of Halley's comet as observed in. Oc-

tober, 1835, by Bessel, showing the luminous jets which emanated

from the nucleus
; Fig. 3 is a representation of Biela's comet as

observed in February, 1846, by Struve, showing the division into

two comets
; Fig. 4 is a representation of the great comet of 18-43

as seen by the naked eye ;
and Fig. 5 is a representation of the

remarkable comet of 1744 as seen March 8th, at Geneva, by Che-

seaux.

Plate VI. also contains representations of comets. Fig. 2 is a

representation of Donati's comet as it appeared to the naked eye
October 10, 1858, according to a drawing by Professor Bond

;

Fig. 1 is a representation of Halley's comet as it appeared to the

naked eye October 29, 1835, according to Struve; and Fig. 3 is a

telescopic view of the head of Donati's comet as it appeared Oc-

tober 2, 1858, according to a drawing by Professor Bond.

Plate VII., Fig. 1, is a representation of the great nebula in

Andromeda, copied from Herschel's Astronomy, Plate II.
; Fig. 2

is a representation of the great cluster w Centauri, copied from

Herschel's Cape of Good Hope Observations, Plate V.
;
and Fig.

3 is a representation of the great nebula in Orion, copied from

Herschel.

Plate VIII.
, Fig. 1, is a representation of the dumb-bell nebula ;

Fig. 3, the annular nebula in Lyra ; Fig. 2, the crab nebula
;
and

Fig. 4, the spiral nebula all copied from figures in Nichol's S\*s-

tem of the World.



INDEX.

Page) POK
Aberration, amount of. 105 Central force inversely as square of

'
illustrated 105 distance ." 132

' of a" star at the pole 106 -Central force of a moving body 130
' of a star in ecliptic 106'Central forces, how they vary 131

Aerolites described 282 Centrifugal force, and force of gravity 23
orbits of. 284 " " and form of body... 24
wmr, r^f "

at any latitude 24
"

computed 23
"

effects of. 22

Change of seasons, cause of. 62
" made greater 63

Chronometers, longitude by 179

orbits of. 284

origin of. 283

Alt tude and azimuth defined 12

and azimuth instrument 41

instrument adjusted 4fr

of a body determined 4(

Altitudes measured by sextant 5(

Animal life on the moon 122

Annual equation 15<
"

parallax of stars 292

Annular mountains of moon 330

Anomaly, mean, and true 107

Apparent motion of inferior planet.... 201
" of superior planet... 202

Arc of meridian, how measured 2;'

Asteroid system, origin of 226

Asteroids, brightness of. 225
" distance of. 225
" number known 225
"

total number of 225
" within orbit of Mercury.... 22G

Astronomical refractions, table of 328

Astronomv defined 9

Atmosphere, illuminating effect of....

Atmospheric refraction, law of.

Attractions of sun and earth

f>8

li.'J

Baily's beads described 17G

Biek's comet divided 273
" "

history 272

Binary star, mass of 303

Binary stars defined 299
" " elements of. 331
" " number of 302

Code's law disproved 24.r

Brorsen'i

Clock, its error and rate 38
Clusters of stars 304
Colored stars 298

Colures, equinoctial and solstitial 59

Coma, nucleus, etc., of comet 258

Cometary orbit computed 265
'

laws of. 266

Cometary orbits, nature of 265
" "

position of. 258
Comet defined 257
" known to be periodic 268
" of 1744, history 276
" of 1770, history 276
" of 1770, mass of. 277
" of 1843, history 278
"

strike the earth 279

Comet's tail, dimensions of. 261
" formation of 261
"

position of 261

tails, theory of. 262

Comets, number of. 257

period of visibility 258

phases of. 264

quantity of matter 264

telescopic 263

variations of. 259

with several tails 263

Commensurability of periodic times... 256

comet 274|Cone of earth's shadow 154

Conic sections, heavenly bodies move
in.... ... 138

Calendar, Gregorian 73
"

Julian 72 Conjunction and opposition defined... 11

Cavendish's experiment 29
" " of a planet 199

Celestial equator defined 11 Constellations enumerated
"

globe, problems on 74
"

sphere defined 10

names of

origin of

289
287
287
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Horizontal point determined.
Hour circles defined....

Inclination of a planetary orbit

Inequalities in moon's motion
"

periodical and secular....

Inequality of solar days

Jupiter, belts of.
' ' diameter
" distance and period"

spheroidal form

Jupiter's belts explained"
satellites, configuration of...

" distances of
" " mean motions of..

Kepler's laws, deductions from.
" third law
" three laws

Pmgei

46JMars, satellites of
20 "

spheroidal form
"

telescopic appearance
210 Mass of a planet determined

150JMasses
of sun and earth

152|Measurements of meridian arcs

69 Mercury and Venus, elongations" " "
phases of.

227 " "
transits of.

227 "
greatest brightness of.

227 period and distance

227 "
rotation on axis

228 Mercury, visibility of.

231 Meridian mark
228 Meteoric orbits

232 Meteors of August and November

Milky way
136 Minor planets, elements of.

] 35 Moon, causes no refraction.............

Latitude andlongitude defined
" " " of a star
" at sea determined ...

" of a place determined
" " " how known

Law of gravitation at fixed stars
" "

general
Le Terrier and Adams's researches...

Librations of the moon
Light of sun and stars

" transmission of.

Line of the apsides, changes of

Local times compared
Long inequality of Jupiter

" " ofUranus
"

inequalities of planets

Longitude by eclipses of moon
" "

electric telegraph
" "

Jupiter's satellites
" " lunar distances
" " moon culminating stars
" "

solar eclipse
" of a star computed
" of perihelion of a planet . . .

" of sun computed
Lunar cycle"

day, length of.
"

eclipses computed
" "

diagram
" " different kinds
"

ecliptic limits
"

mountains, height of.

list of.

" volcanoes extinct

129

18
60
80
80
19

r><>2

137
244

124

295

232
107

183
252
2.V5
*>

~
>>

18(

182
231

182
181

181

86

8

12

circular craters

diameter of........................

distance of. ......................

heat of..............................

revolution of. ......................

rotation and revolution of. .....

telescopic appearance...........

visible in a solar eclipse .........

" in total eclipse...........

Moon's atmosphere.......................
centre of gravity................

diameter affected by altitude

disc, obscure part ...............
"

bright points on..........

elliptic motion disturbed ......

equatorial parallax.............

meridian altitude ...............

nodes, retrograde motion of..

orbit, changes of. ...............
"

eccentricity of. ..........
" form of. ...................

path about the sun.............

"
position of. ....... . ........

penumbra, breadth of. .........

phases.............................

rising, daily retardation.......

rotation upon an axis..........

shadow, breadth of. ............

"
length of ..............

"
velocity of. ............

transits, interval of. ............

Motion, direct and retrograde..........

of the solar system.............

on a curve, law of. .............

330 Mural circle described

Madler's hypothesis
Mars, color of
" distance and period.
"

phases

312
223
212'

Nebula crab
" dumb-bell ....

in Andromeds
in Lyra
in Orion

223
223
223
247
143
26

213
213
217
215
214
215
215
81

280
280
310
322
116
120
100
100
118
110
125
118
174
158
116
126
115
1H
174
143
329
113
150

127
112
112
126
112

168
113
115
124

167
166

168
113
202
206
120
43

307
307
306
308
30C
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Nebulaspiral
Nebulae, brightness of...,

"
changes of.

" described
" distribution of.,

planetary
' ' resolvable into stars

Nebular hypothesis, argument for.....
" " stated

Nebulosity of comets
Nebulous stars

Neptune discovered at Berlin
" distance and period
' '

early observations of.
"

satellite of.

Nodes ascending and descending
" of a planetary orbit
" of the moon's orbit

Nucleus, dimensions of

Nutation, solar and lunar

Oblique sphere defined

Obliquity of ecliptic determined

Observations for moon's parallax" made in meridian

Occupations of Jupiter's satellites
" of stars

Olbers's hypothesis inadmissible
" " " stated

Orbit of a binary star

Parallax at any altitude computed....

dependent upon ellipticity.."
diurnal, defined

" horizontal
" of Alpha Centauri
" of fixed stars, catalogue" of moon determined
" of GlCygni

of various stars
' ' related to distance

Parallel sphere defined

Pendulum experiments in a mine
" " on a mount-

ain

Periodical comets, elements of.
"

inequalities of planets
Periodicity, cause of.

Periodic time of a planet" times and major axes
Perturbations of the planets
Planet at perihelion fall to the sun...

"
deficient

' elements of orbit
"

phases of
" when visible

Planetary system, elements of

Planets, apparent motion of

diameter of.
*' number of......

Page!

307 Planets, orbits of.

310 Pole of equator, motion of.

309 "
star, how found

305|
" "

varies

309 Pons's comet
308 'Precession of equinoxes, cause of.....

800 "
why so slow

315jPressure of air and the moon

314|Problem
of three bodies

2f>9
, Problems, miscellaneous

308
. Progression of line of apsides

244 Projectiles, motion of.

245 Proper motion of stars explained
244 Protuberances emanate from sun

245 flame-like

110 " nature of.

209
127 Quadruple stars

258
104 Reading microscope described

Refraction affected by temperature....
21 "

atmospheric
64 " determined by observation

79 " how computed
38 Resisting medium

230 Resultant of two rotary motions
1 73 Revolution near earth's surface

226 "
of celestial sphere, time of

224 Revolutions, sidereal and synodic
302 Right ascension defined.

sphere denned.,

Rotary and orbital motions of earth..

79
6 Satellites, elements of.

76 " motion of..

293 " number of.

33 1 Saturn, diameter of.

77 " distance and period of.

294 " mass and density of.

294 "
rotation of....

77 Saturn's inner ring,
21 "

rings, appearance of.

30 " described

dimensions of.

31 "
disappearance of

329 " how sustained

252 "
observations of

291 "
variations of.

205 "
satellites.

134 Secular acceleration of moon

constancy of major axes

inequalities of planets
variation of eccentricity" of inclination

201 Soxtant described.

204 Shooting stars described....

321 " "
height and velocity of

200 Sidereal and solar time compared
day defined

period, how determined

199
101
13

101
275
101
103
123
142
316
151

189
296
178
177
178

304

45
55
51
53
52

271
102
140
10

110
20
21

141

324
136

199
233
233
240
233
237
238
233
234
235
238
237
234
239
152
254:

253
254
253
49

279
279
68
11

111



INDEX. 345

Sidereal time defined



346 INDEX.

Variable stars, catalogue of. 332 1 Water on the moon 122

Variation, cause of. 149 Weather influenced by the moon 123
" defined 1 49 Weight at pole and equator 25

Velocity of a body in a curve 130 "
loss of at equator 28

Venus/morning star 216

period and distance of. 2 1 6 Year, anomalistic 109
rotation on axis of. .

satellite of

twilight of.,

21fi

217
21 C,

beginning of 74
first and last days of 74

tropical and sidereal 104
visible in daytime 216

Vernier described 44 Zenith and nadir defined 11
" of graduated circles 44 Zodiacal light 99

Vertical circle defined ... ILZodiac, signs and constellations of.... 101

Volcanoes, lunar 120 " " enumerated 60
"

terrestrial 1 20 Zones of the earth 61
" without air or water 122J
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